A Mean Field Game Approach to Bitcoin Mining

被引:0
作者
Bertucci, Charles [1 ]
Bertucci, Louis [2 ]
Lasry, Jean-Michel [3 ]
Lions, Pierre-Louis [3 ,4 ]
机构
[1] Ecole Polytech, CMAP, UMR 7641, F-91120 Palaiseau, France
[2] Inst Louis Bachelier, F-75002 Paris, France
[3] Univ Paris 09, PSL Res Univ, UMR 7534, CEREMADE, F-75016 Paris, France
[4] Coll France, 3 Rue Ulm, F-75005 Paris, France
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2024年 / 15卷 / 03期
关键词
blockchain; mean field games; bitcoin mining;
D O I
10.1137/23M1617813
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present an analysis of the Proof-of-Work consensus algorithm, used on the Bitcoin blockchain, using a mean field game framework. Using a master equation, we provide an equilibrium characterization of the total computational power devoted to mining the blockchain (hashrate). This class of models allows us to adapt to many different situations. The essential structure of the game is preserved across all the enrichments. In deterministic settings, the hashrate ultimately reaches a steady state in which it increases at the rate of technological progress only. In stochastic settings, there exists a target for the hashrate for every possible random state. As a consequence, we show that in equilibrium the security of the underlying blockchain and the energy consumption either are constant or increase with the price of the underlying cryptocurrency.
引用
收藏
页码:960 / 987
页数:28
相关论文
共 30 条
  • [1] Mean field games models of segregation
    Achdou, Yves
    Bardi, Martino
    Cirant, Marco
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (01) : 75 - 113
  • [2] ALSAbAH H., 2020, SSRN 3273982
  • [3] Finite state mean field games with Wright-Fisher common noise
    Bayraktar, Erhan
    Cecchin, Alekos
    Cohen, Asaf
    Delarue, Francois
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 147 : 98 - 162
  • [4] BERTUCCI C ..., 2022, Research paper
  • [5] On Lipschitz solutions of mean field games master equations
    Bertucci, Charles
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (05)
  • [6] MONOTONE SOLUTIONS FOR MEAN FIELD GAMES MASTER EQUATIONS: FINITE STATE SPACE AND OPTIMAL STOPPING
    Bertucci, Charles
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 1099 - 1132
  • [7] Fokker-Planck equations of jumping particles and mean field games of impulse control
    Bertucci, Charles
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (05): : 1211 - 1244
  • [8] Some remarks on mean field games
    Bertucci, Charles
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (03) : 205 - 227
  • [9] Optimal stopping in mean field games, an obstacle problem approach
    Bertucci, Charles
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 120 : 165 - 194
  • [10] Equilibrium Bitcoin Pricing
    Biais, Bruno
    Bisiere, Christophe
    Bouvard, Matthieu
    Casamatta, Catherine
    Menkveld, Albert J. J.
    [J]. JOURNAL OF FINANCE, 2023, 78 (02) : 967 - 1014