Desertification Control Strategies: A Hybrid Approach Using Cellular Automata and Reinforcement Learning

被引:0
作者
Mouakher, Amira [1 ]
Kone, Alassane [1 ,2 ]
Fontaine, Allyx [2 ]
El Yacoubi, Samira [1 ]
机构
[1] UG, UA, Espace Dev UMR 228 UPVD, IRD,UM, Perpignan, France
[2] UPVD, UA, Espace Dev UMR 228 UG, IRD,UM, Guyana, France
来源
CELLULAR AUTOMATA, ACRI 2024 | 2024年 / 14978卷
关键词
Cellular automata; Reinforcement learning; Hybrid approach; Desertification control; Management factor; PREDICTION;
D O I
10.1007/978-3-031-71552-5_17
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a novel hybrid approach for desertification control that leverages the strengths of cellular automata (CA) modeling and reinforcement learning (RL). We employ the DESERTICAS software, a specifically designed CA model for simulating desertification dynamics. The model incorporates a variety of factors influencing land degradation, including those from the MEDALUS model, fundamental desertification properties, land-use practices, exploitability, and management. Our key contribution is to introduce a control parameter within the DESERTICAS framework. This allows us to formulate desertification control as an input-output problem and apply control theory principles to CA models. By manipulating the average intensity of a dominant factor (identified as management in this study), we can indirectly influence all other factors and potentially decelerate or even halt land degradation processes. Furthermore, we integrate a Reinforcement Learning (RL) agent into the simulation environment. This virtual entity continuously explores different management strategies, dynamically adjusting its actions based on the observed outcomes. This combination of CA modeling and RL constitutes a hybrid approach to desertification control. The experimental results show promising outcomes, with the inclusion of the RL agent leading to a significant reduction in desertified regions. This study paves the way for further exploration of hybrid CA-RL techniques for environmental applications.
引用
收藏
页码:203 / 216
页数:14
相关论文
共 27 条
  • [1] Desertification prediction with an integrated 3D convolutional neural network and cellular automata in Al-Muthanna, Iraq
    Aldabbagh, Yasir Abdulameer Nayyef
    Shafri, Helmi Zulhaidi Mohd
    Mansor, Shattri
    Ismail, Mohd Hasmadi
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (10)
  • [2] Assennato F., 2023, EGU GEN ASS C
  • [3] Board M.E.A., 2005, ECOSYSTEMS HUMAN WEL
  • [4] Information Extraction and Prediction of Rocky Desertification Based on Remote Sensing Data
    Cao, Jiaju
    Wen, Xingping
    Zhang, Meimei
    Luo, Dayou
    Tan, Yinlong
    [J]. SUSTAINABILITY, 2022, 14 (20)
  • [5] Dridi S., 2019, Ph.D. thesis
  • [6] Cellular automata modelling and spreadability
    El Yacoubi, S
    El Jai, A
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (9-10) : 1059 - 1074
  • [7] Gao J., 2007, J. Arid Land Stud., V17, P101
  • [8] Regional desertification: A global synthesis
    Hellden, Ulf
    Tottrup, Christian
    [J]. GLOBAL AND PLANETARY CHANGE, 2008, 64 (3-4) : 169 - 176
  • [9] Reinforcement learning: A survey
    Kaelbling, LP
    Littman, ML
    Moore, AW
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1996, 4 : 237 - 285
  • [10] A desertification risk assessment decision support tool (DRAST)
    Karavitis, Christos A.
    Tsesmelis, Demetrios E.
    Oikonomou, Panagiotis D.
    Kairis, Orestis
    Kosmas, Constantinos
    Fassouli, Vassilia
    Ritsema, Coen
    Hessel, Rudi
    Jetten, Victor
    Moustakas, Nikolaos
    Todorovic, Branislav
    Skondras, Nikolaos A.
    Vasilakou, Constantina G.
    Alexandris, Stavros
    Kolokytha, Elpida
    Stamatakos, Demetrios, V
    Stricevic, Ruzica
    Chatzigeorgiadis, Emmanuel
    Brandt, Jane
    Geeson, Nicky
    Quaranta, Giovanni
    [J]. CATENA, 2020, 187