Structure-preserving finite element methods for computing dynamics of rotating Bose-Einstein condensates

被引:0
作者
Li, Meng [1 ]
Wang, Junjun [2 ]
Guan, Zhen [2 ]
Du, Zhijie [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Pingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
[3] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotating Bose-Einstein condensate; Gross-Pitaevskii equation; angular momentum rotation; structure-preserving; finite element methods; GROSS-PITAEVSKII EQUATION; NONLINEAR SCHRODINGER-EQUATIONS; CENTRAL VORTEX STATES; GALERKIN APPROXIMATIONS; GROUND-STATE; EFFICIENT; VORTICES;
D O I
10.1051/m2an/2024067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the construction and analysis of structure-preserving Galerkin methods for computing the dynamics of rotating Bose-Einstein condensate (BEC) based on the Gross-Pitaevskii equation with angular momentum rotation. Due to the presence of the rotation term, constructing finite element methods (FEMs) that preserve both mass and energy remains an unresolved issue, particularly in the context of nonconforming FEMs. Furthermore, in comparison to existing works, we provide a comprehensive convergence analysis, offering a thorough demonstration of the methods' optimal and high-order convergence properties. Finally, extensive numerical results are presented to check the theoretical analysis of the structure-preserving numerical method for rotating BEC, and the quantized vortex lattice's behavior is scrutinized through a series of numerical tests.
引用
收藏
页码:519 / 552
页数:34
相关论文
共 50 条
  • [31] Rotating matter waves in Bose-Einstein condensates
    Kapitula, Todd
    Kevrekidis, P. G.
    Carretero-Gonzalez, R.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 233 (02) : 112 - 137
  • [32] Dynamics of two-component Bose-Einstein condensates in rotating traps
    Corro, I.
    Scott, R. G.
    Martin, A. M.
    PHYSICAL REVIEW A, 2009, 80 (03):
  • [33] A finite element toolbox for the Bogoliubov-de Gennes stability analysis of Bose-Einstein condensates
    Sadaka, Georges
    Kalt, Victor
    Danaila, Ionut
    Hecht, Frederic
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 294
  • [34] Parallel finite-element codes for the Bogoliubov-de Gennes stability analysis of Bose-Einstein condensates
    Sadaka, Georges
    Jolivet, Pierre
    Charalampidis, Efstathios G.
    Danaila, Ionut
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 306
  • [35] Global attractor for a Ginzburg-Landau type model of rotating Bose-Einstein condensates
    Cheskidov, Alexey
    Marahrens, Daniel
    Sparber, Christof
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2017, 14 (01) : 5 - 32
  • [36] Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensates
    Chang, S. -L.
    Chien, C. S.
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (09) : 707 - 719
  • [37] Computing multiple peak solutions for Bose-Einstein condensates in optical lattices
    Chang, S. -L.
    Chien, C. -S.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (06) : 926 - 947
  • [38] A Regularized Newton Method for Computing Ground States of Bose-Einstein Condensates
    Wu, Xinming
    Wen, Zaiwen
    Bao, Weizhu
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) : 303 - 329
  • [39] Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity
    Antoine, Xavier
    Duboscq, Romain
    NONLINEAR OPTICAL AND ATOMIC SYSTEMS: AT THE INTERFACE OF PHYSICS AND MATHEMATICS, 2015, 2146 : 49 - 145
  • [40] DIMENSION REDUCTION FOR ROTATING BOSE-EINSTEIN CONDENSATES WITH ANISOTROPIC CONFINEMENT
    Mehats, Florian
    Sparber, Christof
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (09) : 5097 - 5118