Structure-preserving finite element methods for computing dynamics of rotating Bose-Einstein condensates

被引:0
作者
Li, Meng [1 ]
Wang, Junjun [2 ]
Guan, Zhen [2 ]
Du, Zhijie [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Pingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
[3] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotating Bose-Einstein condensate; Gross-Pitaevskii equation; angular momentum rotation; structure-preserving; finite element methods; GROSS-PITAEVSKII EQUATION; NONLINEAR SCHRODINGER-EQUATIONS; CENTRAL VORTEX STATES; GALERKIN APPROXIMATIONS; GROUND-STATE; EFFICIENT; VORTICES;
D O I
10.1051/m2an/2024067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the construction and analysis of structure-preserving Galerkin methods for computing the dynamics of rotating Bose-Einstein condensate (BEC) based on the Gross-Pitaevskii equation with angular momentum rotation. Due to the presence of the rotation term, constructing finite element methods (FEMs) that preserve both mass and energy remains an unresolved issue, particularly in the context of nonconforming FEMs. Furthermore, in comparison to existing works, we provide a comprehensive convergence analysis, offering a thorough demonstration of the methods' optimal and high-order convergence properties. Finally, extensive numerical results are presented to check the theoretical analysis of the structure-preserving numerical method for rotating BEC, and the quantized vortex lattice's behavior is scrutinized through a series of numerical tests.
引用
收藏
页码:519 / 552
页数:34
相关论文
共 50 条
  • [21] Dynamics of Bose-Einstein condensates under anharmonic trap
    Al-Jibbouri, H.
    CONDENSED MATTER PHYSICS, 2022, 25 (02)
  • [22] C and Fortran OpenMP programs for rotating Bose-Einstein condensates
    Kumar, Ramavarmaraja Kishor
    Loncar, Vladimir
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    Balaz, Antun
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 240 : 74 - 82
  • [23] Dynamics of Vortex Dipoles in Anisotropic Bose-Einstein Condensates
    Goodman, Roy H.
    Kevrekidis, P. G.
    Carretero-Gonzalez, R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 699 - 729
  • [24] An efficient numerical method for computing dynamics of spin F=2 Bose-Einstein condensates
    Wang, Hanquan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (15) : 6155 - 6168
  • [25] Vortices in rotating trapped dilute Bose-Einstein condensates
    Fetter, AL
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 404 (1-4): : 158 - 165
  • [26] Unified way for computing dynamics of Bose-Einstein condensates and degenerate Fermi gases
    Gawryluk, K.
    Karpiuk, T.
    Gajda, M.
    Rzazewski, K.
    Brewczyk, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (11) : 2143 - 2161
  • [27] Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates via the Nonuniform FFT
    Bao, Weizhu
    Tang, Qinglin
    Zhang, Yong
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (05) : 1141 - 1166
  • [28] Fluctuations and correlations in rotating Bose-Einstein condensates
    Baharian, Soheil
    Baym, Gordon
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [29] Bifurcations of Multi-Vortex Configurations in Rotating Bose-Einstein Condensates
    Garcia-Azpeitia, C.
    Pelinovsky, D. E.
    MILAN JOURNAL OF MATHEMATICS, 2017, 85 (02) : 331 - 367
  • [30] Parametric triggering of vortices in toroidally trapped rotating Bose-Einstein condensates
    Arivazhagan, M.
    Muruganandam, P.
    Athavan, N.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2023, 604