Experimental and numerical investigation of turbulent spots in a flat plate boundary layer

被引:0
作者
Hu, N. [1 ]
Zhu, Y. D. [1 ]
Lee, C. B. [1 ]
Smith, C. R. [2 ]
机构
[1] Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[2] Lehigh Univ, Dept Mech Engn & Mech, 19 Mem Dr West, Bethlehem, PA 18015 USA
基金
中国国家自然科学基金;
关键词
boundary layer structure; transition to turbulence; TRANSITION; PLANE; VISUALIZATION; BREAKDOWN; VORTEX;
D O I
10.1017/jfm.2025.202
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The evolution of turbulent spots in a flat plate boundary layer is examined using time-resolved tomographic particle image velocimetry (Tomo-PIV) experiments and direct numerical simulation (DNS). The characteristics of flow structures are examined using timelines and material surfaces. Both the numerical and experimental results reveal a notable behaviour in the developmental process of turbulent spots: the development of low-speed streaks at the spanwise edges of turbulent spots, followed by the subsequent formation of hairpin vortices. The behaviour of these low-speed streaks is further investigated using timelines and material surfaces generated for a series of regions and development times. The results indicate that these low-speed streaks exhibit characteristic wave behaviour. The low-speed streaks are observed to lift up as three-dimensional (3-D) waves, with high-shear layers forming at the interface of these waves. These induced high-shear layers become unstable and evolve into vortices, which contribute to the expansion of the turbulent spot. These findings show the significant role of 3-D waves in the development of turbulent spots, supporting the hypothesis that 3-D waves serve as initiators of vortices at the bounding surface of a turbulent spot.
引用
收藏
页数:32
相关论文
共 57 条