Well-posedness of quasilinear parabolic equations in time-weighted spaces

被引:2
作者
Matioc, Bogdan-Vasile [1 ]
Walker, Christoph [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
[2] Leibniz Univ Hannover, Inst Angew Math, Welfengarten 1, D-30167 Hannover, Germany
关键词
quasilinear parabolic problem; semiflow; well-posedness; time-weighted-spaces; chemotaxis equations; EVOLUTION-EQUATIONS; GLOBAL EXISTENCE; STABILITY;
D O I
10.1017/prm.2024.88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Well-posedness in time-weighted spaces of certain quasilinear (and semilinear)parabolic evolution equationsu '=A(u)u+f(u) is established. The focus lies on thecase of strict inclusions dom(f) subset of(dom(A) of the domains of the nonlinearitiesu -> f(u) andu -> A(u). Based on regularizing effects of parabolic equations it isshown that a semiflow is generated in intermediate spaces. In applications this allowsone to derive global existence from weaker a priori estimates. The result is illustratedby examples of chemotaxis systems.
引用
收藏
页数:33
相关论文
共 37 条