Standing wave for two-dimensional Schrödinger equations with discontinuous dispersion

被引:0
作者
Alouini, B. [1 ,2 ]
Goubet, O. [3 ]
Manoubi, I. [1 ,4 ]
机构
[1] Fac Sci Monastir, Lab Anal Probabilite & Fractals, Monastir, Tunisia
[2] Univ Monastir, IPEIM, Monastir, Tunisia
[3] Univ Lille, Lille, France
[4] Univ Gabes, ISSAT, Gabes, Tunisia
关键词
Nonlinear Schr & ouml; dinger equation; discontinuous dispersion; standing waves; ground states; orbital stability; SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM;
D O I
10.1080/00036811.2025.2468506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a two-dimensional semilinear Schr & ouml;dinger equation with a singular anisotropic dispersion on the line $ x_1=0 $ x1=0. We first discuss the existence and uniqueness of standing wave solutions for these equations. We then study the orbital stability of these standing waves into a suitable subspace of the energy space that allows us to use the classical methods.
引用
收藏
页码:2414 / 2435
页数:22
相关论文
共 25 条
[1]   The bright and singular solitons of (2+1)-dimensional nonlinear Schrodinger equation with spatio-temporal dispersions [J].
Akinyemi, Lanre ;
Hosseini, Kamyar ;
Salahshour, Soheil .
OPTIK, 2021, 242
[2]   Extinction for a discrete competition system with the effect of toxic substances [J].
Yue, Qin .
ADVANCES IN DIFFERENCE EQUATIONS, 2016, :1-15
[3]   Dispersion and Strichartz inequalities for Schrodinger equations with singular coefficients [J].
Banica, V .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :868-883
[4]  
Bergh J., 1976, INTERPOLATION SPACES, V233
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   Smoothing and dispersive estimates for ID Schrodinger equations with BV coefficients and applications [J].
Burq, N ;
Planchon, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (01) :265-298
[7]  
Carles R., 2022, EMS SURV MATH SCI
[8]   UNIVERSAL DYNAMICS FOR THE DEFOCUSING LOGARITHMIC SCHRODINGER EQUATION [J].
Carles, Remi ;
Gallagher, Isabelle .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (09) :1761-1801
[9]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[10]   STABLE-SOLUTIONS OF THE LOGARITHMIC SCHRODINGER-EQUATION [J].
CAZENAVE, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (10) :1127-1140