High-performance supercapacitors with novel poly (3,4-ethylenedioxythiophene)/reduced graphene oxide/HfS2 nanocomposite electrodes

被引:0
|
作者
Ganesan, R. [1 ]
Xavier, Joseph Raj [2 ]
机构
[1] Autonomous Inst, SA Engn Coll, Dept Phys, Chennai 600077, Tamil Nadu, India
[2] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Chem, Chennai 602105, Tamil Nadu, India
关键词
Polymer nanocomposite; Electrochemical properties; Specific capacitance; Energy density; Supercapacitors; COMPOSITES; GRAPHITE;
D O I
10.1016/j.inoche.2025.114034
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this research work, we have successfully synthesized a ternary nanocomposite (PEDOT/rGO/HfS2) by combining poly[3,4-ethylenedioxythiophene (PEDOT)], reduced graphene oxide (rGO), and Hafnium disulfide (HfS2) using a simple in situ polymerization and hydrothermal technique for energy storage applications. The XRD, Raman, TGA, XPS, TEM, and FESEM techniques were utilized to examine the thermal, structural, and chemical composition and morphology of the as-prepared samples. The TGA result confirms that the PEDOT/ rGO/HfS2 ternary nanocomposite electrode has the highest weight retention value in comparison to pure PEDOT, PEDOT/rGO, and PEDOT/HfS2 synthesized electrodes. It indicates that the PEDOT/rGO/HfS2 ternary nano- composite achieved the highest thermal stability. The electrochemical characteristics of the PEDOT/rGO/HfS2 nanocomposite are assessed using CV and GCD experiments. The PEDOT/rGO/HfS2 ternary nanocomposite electrode displayed enhanced specific capacitance, reduced charge transfer resistance, and improved cycle stability in comparison to the individual PEDOT, PEDOT/rGO, and PEDOT/HfS2 electrodes, owing to the strong interactions between PEDOT, rGO, and HfS2. Furthermore, the presence of rGO had a remarkable impact on PEDOT's durability and electrical storage capacity. This highlights the beneficial effects of rGO, resulting in the attainment of the highest specific capacitance (1015 Fg-1 at 5 Ag-1), exceptional ability to maintain performance at different charging rates, and impressive retention of capacitance (98.1 % over 10,000 cycles at 5 Ag-1). The PEDOT/rGO/HfS2 hybrid electrode exhibits a remarkable specific energy of 171 Wh kg-1 at a specific power of 2457 W kg-1. After 10,000 cycles, the capacitance only decreases by 1.9 % of its initial amount. The PEDOT/ rGO/HfS2 ternary nanocomposite demonstrates excellent long-term cyclic stability, as seen by its 98.1 % capacitance retention after 10,000 consecutive cycles. This suggests that it is a highly efficient, cost-effective, and promising electrode material for further investigations in supercapacitors. Hence, this technique will facilitate the development of a next-generation of sophisticated electrode materials for the storage of energy.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Step-by-step assembled poly(3,4-ethylenedioxythiophene)/manganese dioxide composite electrodes: Tuning the structure for high electrochemical performance
    Tang, Pengyi
    Zhao, Yongqing
    Xu, Cailing
    ELECTROCHIMICA ACTA, 2013, 89 : 300 - 309
  • [42] CaMoO4 Nanoparticle-Doped Graphene Oxide as Electrodes for High-Performance Supercapacitors
    Chen, Gang
    Chen, Guangzhou
    Pan, Li
    Chen, Dongsheng
    NANO, 2022, 17 (03)
  • [43] In Situ Chemical Oxidative Polymerization Preparation of Poly(3,4-ethylenedioxythiophene)/Graphene Nanocomposites with Enhanced Thermoelectric Performance
    Xu, Kongli
    Chen, Guangming
    Qiu, Dong
    Chemistry-An Asian Journal, 2015, 10 (05) : 1225 - 1231
  • [44] Tubular graphene nanoribbons with attached manganese oxide nanoparticles for use as electrodes in high-performance supercapacitors
    Wu, Mao-Sung
    Fu, Yan-Hao
    CARBON, 2013, 60 : 236 - 245
  • [45] Rational Design of High-Performance Electrodes Based on Ferric Oxide Nanosheets Deposited on Reduced Graphene Oxide for Advanced Hybrid Supercapacitors
    Ji, Zhenyuan
    Chen, Lizhi
    Tang, Guanxiang
    Zhong, Jiali
    Yuan, Aihua
    Zhu, Guoxing
    Shen, Xiaoping
    SMALL, 2024, 20 (15)
  • [46] Enhanced supercapacitive behaviors of poly(3,4-ethylenedioxythiophene)/graphene oxide hybrids prepared under optimized electropolymerization conditions
    Zhou, Haihan
    Ren, Mengyao
    Zhai, Hua-Jin
    ELECTROCHIMICA ACTA, 2021, 372
  • [47] Nitrogen-doped mesoporous reduced graphene oxide for high-performance supercapacitors
    Viet Hung Pham
    Thuy-Duong Nguyen-Phan
    Jang, Jinhee
    Thi Diem Tuyet Vu
    Lee, Yoon Jae
    Song, In Kyu
    Shin, Eun Woo
    Chung, Jin Suk
    RSC ADVANCES, 2014, 4 (43): : 22455 - 22462
  • [48] MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors
    Ye, Kai-Hang
    Liu, Zhao-Qing
    Xu, Chang-Wei
    Li, Nan
    Chen, Yi-Bo
    Su, Yu-Zhi
    INORGANIC CHEMISTRY COMMUNICATIONS, 2013, 30 : 1 - 4
  • [49] Nickel hydroxide nanosheets supported on reduced graphene oxide for high-performance supercapacitors
    Zang, Xiaoxian
    Sun, Chencheng
    Dai, Ziyang
    Yang, Jun
    Dong, Xiaochen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 691 : 144 - 150
  • [50] Transition Metal Sulfides Hybridized with Reduced Graphene Oxide for High-Performance Supercapacitors
    Huang, Dongxue
    Zhang, Ying
    Zeng, Ting
    Zhang, Yuanyuan
    Wan, Qijin
    Yang, Nianjun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (02): : 643 - 653