Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification

被引:0
作者
Lu, Yiqing
Shi, Ye
Liu, Yu
Wang, Haoyu [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Batteries; Degradation; Market research; Data models; Predictive models; Mathematical models; Benchmark testing; Estimation; Accuracy; Prediction algorithms; Lithium-ion battery; prediction; remaining useful life; trend identification; PARTICLE FILTER; MODEL; PROGNOSTICS;
D O I
10.1109/TII.2025.3528583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing methods for predicting lithium-ion battery remaining useful lifetime (RUL) rely on complete capacity degradation data or extensive historical profiles. However, such sufficient conditions are usually unavailable in practical battery usage. To cope with this issue, a framework for RUL estimation with fragment data is proposed. The framework utilizes a small amount of prior knowledge as benchmark data to create an empirical model-based predictive method for estimating RUL by fragment historical data during nonlinear degradation stage. A more specified parameter initialization is obtained by trend identification of the fragment. Particle filter (PF) algorithm is utilized for model parameter update with proposed improved resampling strategy. RUL predictions using two different datasets demonstrate the effectiveness of the proposed method. An error margin of less than ten cycles in RUL predictions is consistently achieved in CS2 dataset when employing fragments ranging from 50 to 60 cycles. And an error margin of around 20 cycles is achieved in CX2 dataset by fragments ranging from 60 to 80 cycles. The proposed method renders a more precise and stable predictive result with high confident level.
引用
收藏
页码:3666 / 3675
页数:10
相关论文
共 50 条
  • [41] A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries
    Zhao, Qi
    Qin, Xiaoli
    Zhao, Hongbo
    Feng, Wenquan
    MICROELECTRONICS RELIABILITY, 2018, 85 : 99 - 108
  • [42] Remaining useful life prediction of lithium-ion batteries based on stacked autoencoder and gaussian mixture regression
    Wei, Meng
    Ye, Min
    Wang, Qiao
    Xinxin-Xu
    Twajamahoro, Jean Pierre
    JOURNAL OF ENERGY STORAGE, 2022, 47
  • [43] A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction
    Elmahallawy, Mohamed
    Elfouly, Tarek
    Alouani, Ali
    Massoud, Ahmed M. M.
    IEEE ACCESS, 2022, 10 : 119040 - 119070
  • [44] Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network
    Hu, Wangyang
    Zhao, Shaishai
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [45] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Support Vector Regression Optimized and Grey Wolf Optimizations
    Yang, Zhanshe
    Wang, Yunhao
    Kong, Chenzai
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [46] An Online Prediction of Capacity and Remaining Useful Life of Lithium-Ion Batteries Based on Simultaneous Input and State Estimation Algorithm
    Ouyang, Tiancheng
    Xu, Peihang
    Chen, Jingxian
    Lu, Jie
    Chen, Nan
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (07) : 8102 - 8113
  • [47] Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Zhang, Yongzhi
    Xiong, Rui
    He, Hongwen
    Pecht, Michael G.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (07) : 5695 - 5705
  • [48] Remaining useful life prediction for lithium-ion batteries based on sliding window technique and Box-Cox transformation
    Liu, Kang
    Kang, Longyun
    Wan, Lei
    Xie, Di
    Li, Jie
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [49] Remaining useful life prediction for lithium-ion batteries using particle filter and artificial neural network
    Qin, Wei
    Lv, Huichun
    Liu, Chengliang
    Nirmalya, Datta
    Jahanshahi, Peyman
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2020, 120 (02) : 312 - 328
  • [50] Prediction of Remaining Useful Life of the Lithium-Ion Battery Based on Improved Particle Filtering
    Wu, Tiezhou
    Zhao, Tong
    Xu, Siyun
    FRONTIERS IN ENERGY RESEARCH, 2022, 10