Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification

被引:0
作者
Lu, Yiqing
Shi, Ye
Liu, Yu
Wang, Haoyu [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Batteries; Degradation; Market research; Data models; Predictive models; Mathematical models; Benchmark testing; Estimation; Accuracy; Prediction algorithms; Lithium-ion battery; prediction; remaining useful life; trend identification; PARTICLE FILTER; MODEL; PROGNOSTICS;
D O I
10.1109/TII.2025.3528583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing methods for predicting lithium-ion battery remaining useful lifetime (RUL) rely on complete capacity degradation data or extensive historical profiles. However, such sufficient conditions are usually unavailable in practical battery usage. To cope with this issue, a framework for RUL estimation with fragment data is proposed. The framework utilizes a small amount of prior knowledge as benchmark data to create an empirical model-based predictive method for estimating RUL by fragment historical data during nonlinear degradation stage. A more specified parameter initialization is obtained by trend identification of the fragment. Particle filter (PF) algorithm is utilized for model parameter update with proposed improved resampling strategy. RUL predictions using two different datasets demonstrate the effectiveness of the proposed method. An error margin of less than ten cycles in RUL predictions is consistently achieved in CS2 dataset when employing fragments ranging from 50 to 60 cycles. And an error margin of around 20 cycles is achieved in CX2 dataset by fragments ranging from 60 to 80 cycles. The proposed method renders a more precise and stable predictive result with high confident level.
引用
收藏
页码:3666 / 3675
页数:10
相关论文
共 50 条
  • [31] Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network
    Ma, Guijun
    Zhang, Yong
    Cheng, Cheng
    Zhou, Beitong
    Hu, Pengchao
    Yuan, Ye
    APPLIED ENERGY, 2019, 253
  • [32] Multi-Parameter Optimization Method for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Long, Bing
    Gao, Xiaoyu
    Li, Pengcheng
    Liu, Zhen
    IEEE ACCESS, 2020, 8 : 142557 - 142570
  • [33] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Capacity Estimation and Box-Cox Transformation
    Xue, Qiao
    Shen, Shiquan
    Li, Guang
    Zhang, Yuanjian
    Chen, Zheng
    Liu, Yonggang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 14765 - 14779
  • [34] A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries
    Wang, Fu-Kwun
    Mamo, Tadele
    JOURNAL OF POWER SOURCES, 2018, 401 : 49 - 54
  • [35] Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
    Ren, Lei
    Zhao, Li
    Hong, Sheng
    Zhao, Shiqiang
    Wang, Hao
    Zhang, Lin
    IEEE ACCESS, 2018, 6 : 50587 - 50598
  • [36] Remaining life prediction of lithium-ion batteries based on health management: A review
    Song, Kai
    Hu, Die
    Tong, Yao
    Yue, Xiaoguang
    JOURNAL OF ENERGY STORAGE, 2023, 57
  • [37] A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction
    Feng, Hailin
    Song, Dandan
    JOURNAL OF ENERGY STORAGE, 2021, 34
  • [38] Lithium-ion batteries Remaining Useful Life Prediction Method Considering Recovery Phenomenon
    Zhang, Zhenyu
    Shen, Dongxu
    Peng, Zhen
    Guan, Yong
    Yuan, Huimei
    Wu, Lifeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (08): : 7149 - 7165
  • [39] A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-Ion Batteries
    Gao, Kaidi
    Xu, Jingyun
    Li, Zuxin
    Cai, Zhiduan
    Jiang, Dongming
    Zeng, Aigang
    ACS OMEGA, 2022, 7 (30): : 26701 - 26714
  • [40] AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries
    Chen, Daoquan
    Zhou, Xiuze
    JOURNAL OF ENERGY STORAGE, 2024, 84