Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification

被引:0
|
作者
Lu, Yiqing
Shi, Ye
Liu, Yu
Wang, Haoyu [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Batteries; Degradation; Market research; Data models; Predictive models; Mathematical models; Benchmark testing; Estimation; Accuracy; Prediction algorithms; Lithium-ion battery; prediction; remaining useful life; trend identification; PARTICLE FILTER; MODEL; PROGNOSTICS;
D O I
10.1109/TII.2025.3528583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing methods for predicting lithium-ion battery remaining useful lifetime (RUL) rely on complete capacity degradation data or extensive historical profiles. However, such sufficient conditions are usually unavailable in practical battery usage. To cope with this issue, a framework for RUL estimation with fragment data is proposed. The framework utilizes a small amount of prior knowledge as benchmark data to create an empirical model-based predictive method for estimating RUL by fragment historical data during nonlinear degradation stage. A more specified parameter initialization is obtained by trend identification of the fragment. Particle filter (PF) algorithm is utilized for model parameter update with proposed improved resampling strategy. RUL predictions using two different datasets demonstrate the effectiveness of the proposed method. An error margin of less than ten cycles in RUL predictions is consistently achieved in CS2 dataset when employing fragments ranging from 50 to 60 cycles. And an error margin of around 20 cycles is achieved in CX2 dataset by fragments ranging from 60 to 80 cycles. The proposed method renders a more precise and stable predictive result with high confident level.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [32] Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM
    Zou H.
    Chai Y.
    Yang Q.
    Chen J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (19): : 21 - 31
  • [33] Study on Remaining Useful Life Prediction of Lithium-ion Batteries Based on Charge Transfer Resistance
    基于传荷电阻的锂离子电池剩余寿命预测研究
    Dai, Haifeng (tongjidai@tongji.edu.cn); Dai, Haifeng (tongjidai@tongji.edu.cn), 1600, Chinese Mechanical Engineering Society (57): : 105 - 117
  • [34] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291
  • [35] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing
    Wang, Zhuqing
    Ma, Qiqi
    Guo, Yangming
    ACTUATORS, 2021, 10 (09)
  • [36] Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
    Wu, Jingjin
    Cheng, Xukun
    Huang, Heng
    Fang, Chao
    Zhang, Ling
    Zhao, Xiaokang
    Zhang, Lina
    Xing, Jiejie
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [37] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Xingjun Li
    Dan Yu
    Vilsen S?ren Byg
    Store Daniel Ioan
    Journal of Energy Chemistry, 2023, 82 (07) : 103 - 121
  • [38] iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries
    Jha, Anurag
    Dorkar, Oorja
    Biswas, Atriya
    Emadi, Ali
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [39] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Li, Xingjun
    Yu, Dan
    Byg, Vilsen Soren
    Ioan, Store Daniel
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 103 - 121
  • [40] Remaining useful life prediction for lithium-ion batteries based on an improved GWO–SVR algorithm
    Jin H.
    Hu Y.
    Ge H.
    Hao Z.
    Zeng Z.
    Tang Z.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (03): : 514 - 524