Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification

被引:0
|
作者
Lu, Yiqing
Shi, Ye
Liu, Yu
Wang, Haoyu [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Batteries; Degradation; Market research; Data models; Predictive models; Mathematical models; Benchmark testing; Estimation; Accuracy; Prediction algorithms; Lithium-ion battery; prediction; remaining useful life; trend identification; PARTICLE FILTER; MODEL; PROGNOSTICS;
D O I
10.1109/TII.2025.3528583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing methods for predicting lithium-ion battery remaining useful lifetime (RUL) rely on complete capacity degradation data or extensive historical profiles. However, such sufficient conditions are usually unavailable in practical battery usage. To cope with this issue, a framework for RUL estimation with fragment data is proposed. The framework utilizes a small amount of prior knowledge as benchmark data to create an empirical model-based predictive method for estimating RUL by fragment historical data during nonlinear degradation stage. A more specified parameter initialization is obtained by trend identification of the fragment. Particle filter (PF) algorithm is utilized for model parameter update with proposed improved resampling strategy. RUL predictions using two different datasets demonstrate the effectiveness of the proposed method. An error margin of less than ten cycles in RUL predictions is consistently achieved in CS2 dataset when employing fragments ranging from 50 to 60 cycles. And an error margin of around 20 cycles is achieved in CX2 dataset by fragments ranging from 60 to 80 cycles. The proposed method renders a more precise and stable predictive result with high confident level.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Review on Machine Learning Methods for Remaining Useful Lifetime Prediction of Lithium-ion Batteries
    Su, Nicholas Kwong Howe
    Juwono, Filbert H.
    Wong, W. K.
    Chew, I. M.
    2022 INTERNATIONAL CONFERENCE ON GREEN ENERGY, COMPUTING AND SUSTAINABLE TECHNOLOGY (GECOST), 2022, : 286 - 292
  • [2] Remaining useful life prediction of lithium-ion batteries based on data denoising and improved transformer
    Zhou, Kaile
    Zhang, Zhiyue
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [3] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM
    Wu, Weili
    Lu, Shuangshuang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [4] Probabilistic Prediction of Remaining Useful Life of Lithium-ion Batteries
    Zhang, Renjie
    Li, Jialin
    Chen, Yifei
    Tan, Shiyi
    Jiang, Jiaxu
    Yuan, Xinmei
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1820 - 1824
  • [5] A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction
    Elmahallawy, Mohamed
    Elfouly, Tarek
    Alouani, Ali
    Massoud, Ahmed M.
    IEEE Access, 2022, 10 : 119040 - 119070
  • [6] A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction
    Elmahallawy, Mohamed
    Elfouly, Tarek
    Alouani, Ali
    Massoud, Ahmed M. M.
    IEEE ACCESS, 2022, 10 : 119040 - 119070
  • [7] Remaining Useful Life Prediction of Lithium-ion Batteries Based on a Hybrid Model
    Lv, Haizhen
    Shen, Dongxu
    Yang, Zhigang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1003 - 1008
  • [8] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [9] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [10] A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries
    Wang, Fu-Kwun
    Mamo, Tadele
    JOURNAL OF POWER SOURCES, 2018, 401 : 49 - 54