Deep-learning neural network potentials for titanate perovskites

被引:1
作者
Wisesa, Pandu [1 ]
Tadano, Terumasa [2 ]
Saidi, Wissam A. [1 ,3 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[2] Natl Inst Mat Sci, Res Ctr Magnet & Spintron Mat, Tsukuba 3050047, Japan
[3] USDA, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
基金
美国国家科学基金会;
关键词
Materials modeling; Machine learning; Perovskites; THERMODYNAMIC STABILITY; PHASE-TRANSITIONS; CATIO3; SRTIO3; PHOTOCATALYST; PHOSPHORS; ANTIMONY; CRYSTAL; RHODIUM; BATIO3;
D O I
10.1016/j.commatsci.2025.113719
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rapid discovery of new perovskite materials necessitates an equally rapid capability of understanding their properties. Herein we demonstrate the capability of deep-learning neural network potential (DNP) to capture the subtleties of the complex perovskite family, titanate perovskites ATiO3, where A refers to alkaline earth metal elements. We trained the DNPs on polymorphs of the perovskites and validated by comparing to density functional theory results on physical properties including lattice constants, bond distances, and cohesive energies. To demonstrate the transferability and robustness of the DNPs, we showed that for CaTiO3 the potential can successfully describe the thermal expansion of the orthorhombic, tetragonal, and cubic phases up to 1800 K. Further, we also observed that the experimentally determined phase of CaTiO3 is stabilized in the MD simulations regardless of the initial configuration and notably without explicit training of mixed-phase structures or biasing in the simulation.
引用
收藏
页数:8
相关论文
共 81 条
[1]   BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives [J].
Acosta, M. ;
Novak, N. ;
Rojas, V. ;
Patel, S. ;
Vaish, R. ;
Koruza, J. ;
Rossetti, G. A., Jr. ;
Roedel, J. .
APPLIED PHYSICS REVIEWS, 2017, 4 (04)
[2]   Density functional study of PbTiO3 nanocapacitors with Pt and Au electrodes [J].
Al-Saidi, W. A. ;
Rappe, Andrew M. .
PHYSICAL REVIEW B, 2010, 82 (15)
[3]   Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720K [J].
Ali, R ;
Yashima, M .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (09) :2867-2872
[4]   Highly transferable atomistic machine-learning potentials from curated and compact datasets across the periodic table [J].
Andolina, Christopher M. ;
Saidi, Wissam A. .
DIGITAL DISCOVERY, 2023, 2 (04) :1070-1077
[5]   Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential [J].
Andolina, Christopher M. ;
Wright, Jacob G. ;
Das, Nishith ;
Saidi, Wissam A. .
PHYSICAL REVIEW MATERIALS, 2021, 5 (08)
[6]   Robust, Multi-Length-Scale, Machine Learning Potential for Ag-Au Bimetallic Alloys from Clusters to Bulk Materials [J].
Andolina, Christopher M. ;
Bon, Marta ;
Passerone, Daniele ;
Saidi, Wissam A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (31) :17438-17447
[7]   Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy [J].
Andolina, Christopher M. ;
Williamson, Philip ;
Saidi, Wissam A. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (15)
[8]   A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting [J].
Asai, Rikako ;
Nemoto, Hiroaki ;
Jia, Qingxin ;
Saito, Kenji ;
Iwase, Akihide ;
Kudo, Akihiko .
CHEMICAL COMMUNICATIONS, 2014, 50 (19) :2543-2546
[9]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[10]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)