Chiral Amplifier With Highly Tunable Plasmonic Optical Activities for Molecular Chirality Sensing

被引:0
作者
Ma, Xiaoyun [1 ]
Liu, Shengli [1 ]
Ji, Yinglu [2 ]
Ma, Sijia [3 ]
Jiang, Jian [4 ]
Zhang, Li [3 ]
Wu, Xiaochun [2 ]
Li, Jiafang [1 ]
Liu, Minghua [3 ]
Wang, Rong-Yao [1 ]
机构
[1] Beijing Inst Technol, Sch Phys, 5 Zhongguancun South St, Beijing 100081, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Key Lab Standardizat & Measurement Nanotechnol, 11 Beiyitiao, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Key Lab Colloid Interface & Chem Thermodynam, 2 Beiyijie, Beijing 100190, Peoples R China
[4] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Key Lab Nanosyst & Hierarch Fabricat, 11 Beiyitiao, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
chiral transfer; chirality recognition; chiroptical amplification; molecular chirality sensing; plasmonic circular dichroism; CIRCULAR-DICHROISM; GOLD NANORODS; AMPLIFICATION; SPECTROSCOPY; GROWTH;
D O I
10.1002/admt.202401435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The transfer of chirality from molecules to plasmons is capable of amplifying chiroptical information. Here, a molecular-to-plasmonic chirality transfer system that uses two different molecular chirality inputs to produce a plasmonic chirality output is reported. This system functions as a transistor-analogous chiral amplifier, where the flow of chiral information from the source (helical fibrils) to the drain (a chiral assembly of gold nanorods) is regulated by molecular chirality recognition between the source and the gate (amino acids). More importantly, a high degree of control over the molecular-to-plasmonic chirality transfer is evidenced not only by a quantitative correlation between the molecular chirality input at the gate and the plasmonic chirality output at the drain, but also by the ability of asymmetrical perturbations induced by source-gate chirality recognition to generate substantial variations in the chiroptical amplification of the plasmonic drain output, ranging from 1.22% to 314.93%. Furthermore, this transistor-analogous chiral amplifier can be used to precisely analyze the concentration and chiral purity of gate molecules. This findings have the potential to advance the design of asymmetric functional nanodevices, with implications for chiral information processing and biosensing applications.
引用
收藏
页数:9
相关论文
共 57 条
[1]  
Berova N., 2011, COMPREHENSIVE CHIROP, V1
[2]   Chirality Transfer from Sub-Nanometer Biochemical Molecules to Sub-Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities [J].
Cao, Zhaolong ;
Gao, Han ;
Qiu, Meng ;
Jin, Wei ;
Deng, Shaozhi ;
Wong, Kwok-Yin ;
Lei, Dangyuan .
ADVANCED MATERIALS, 2020, 32 (41)
[3]   Bottom-Up Synthesis of Helical Plasmonic Nanorods and Their Application in Generating Circularly Polarized Luminescence [J].
Chen, Jiaqi ;
Gao, Xinshuang ;
Zheng, Qiang ;
Liu, Jianbo ;
Meng, Dejing ;
Li, Haiyun ;
Cai, Rui ;
Fan, Huizhen ;
Ji, Yinglu ;
Wu, Xiaochun .
ACS NANO, 2021, 15 (09) :15114-15122
[4]   Assembly of mesoscale helices with near- unity enantiomeric excess and light-matter interactions for chiral semiconductors [J].
Feng, Wenchun ;
Kim, Ji-Young ;
Wang, Xinzhi ;
Calcaterra, Heather A. ;
Qu, Zhibei ;
Meshi, Louisa ;
Kotov, Nicholas A. .
SCIENCE ADVANCES, 2017, 3 (03)
[5]   Gold Helix Photonic Metamaterial as Broadband Circular Polarizer [J].
Gansel, Justyna K. ;
Thiel, Michael ;
Rill, Michael S. ;
Decker, Manuel ;
Bade, Klaus ;
Saile, Volker ;
von Freymann, Georg ;
Linden, Stefan ;
Wegener, Martin .
SCIENCE, 2009, 325 (5947) :1513-1515
[6]   Micelle-directed chiral seeded growth on anisotropic gold nanocrystals [J].
Gonzalez-Rubio, Guillermo ;
Mosquera, Jesus ;
Kumar, Vished ;
Pedrazo-Tardajos, Adrian ;
Llombart, Pablo ;
Solis, Diego M. ;
Lobato, Ivan ;
Noya, Eva G. ;
Guerrero-Martinez, Andres ;
Taboada, Jose M. ;
Obelleiro, Fernando ;
MacDowell, Luis G. ;
Bals, Sara ;
Liz-Marzan, Luis M. .
SCIENCE, 2020, 368 (6498) :1472-+
[7]   Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects [J].
Govorov, Alexander O. ;
Fan, Zhiyuan ;
Hernandez, Pedro ;
Slocik, Joseph M. ;
Naik, Rajesh R. .
NANO LETTERS, 2010, 10 (04) :1374-1382
[8]   From individual to collective chirality in metal nanoparticles [J].
Guerrero-Martinez, Andres ;
Lorenzo Alonso-Gomez, Jose ;
Auguie, Baptiste ;
Magdalena Cid, M. ;
Liz-Marzan, Luis M. .
NANO TODAY, 2011, 6 (04) :381-400
[9]   Intense Optical Activity from Three-Dimensional Chiral Ordering of Plasmonic Nanoantennas [J].
Guerrero-Martinez, Andres ;
Auguie, Baptiste ;
Lorenzo Alonso-Gomez, Jose ;
Dzolic, Zoran ;
Gomez-Grana, Sergio ;
Zinic, Mladen ;
Magdalena Cid, M. ;
Liz-Marzan, Luis M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (24) :5499-5503
[10]   Conformation Modulated Optical Activity Enhancement in Chiral Cysteine and Au Nanorod Assemblies [J].
Han, Bing ;
Zhu, Zhening ;
Li, Zhengtao ;
Zhang, Wei ;
Tang, Zhiyong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (46) :16104-16107