Engineering intricacies of implementing single-atom alloy catalysts for low-temperature electrocatalytic CO2 reduction

被引:1
作者
Seim, Isaac Kojo [1 ]
Chhetri, Manjeet [2 ]
Jones, John-Paul [3 ]
Yang, Ming [1 ]
机构
[1] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA
[2] Los Alamos Natl Lab, Fuel Cell Grp, MPA 11, Los Alamos, NM 87545 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
CHEM CATALYSIS | 2024年 / 4卷 / 11期
基金
美国国家航空航天局;
关键词
CARBON-DIOXIDE; ENABLES; ELECTROREDUCTION; ELECTROLYSIS; NANOPARTICLES; DEGRADATION; SELECTIVITY; INTERFACE; PRODUCTS; SURFACE;
D O I
10.1016/j.checat.2024.101164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalysts research for electrocatalytic CO2 reduction reactions (CO2R) has undergone rapid growth in the last decade. Single-atom alloy catalysts (SAAs) featuring atomically dispersed metal dopants on host metal surfaces have shown promises in boosting CO2R yield by optimizing the structure and synergy of the catalytic metals at the atomic scale. Despite the exciting development of SAAs for CO2R in fundamental science, dedicated studies for its engineering implementation have been absent. We use this perspective to discuss our non-exhaustive engineering considerations for implementing SAAs for CO2R. The perspective starts with a brief overview of the current research status for SAAs in CO2R, followed by focal points on structure uncertainties associated with catalyst manufacturing, catalyst layer degradation during reaction, and possibilities for SAAs to mitigate the salt precipitation issue at the device level. We hope our opinions will engage increasing attention toward the engineering catalysis research for applying SAAs to CO2R at scale.
引用
收藏
页数:12
相关论文
共 94 条
[51]  
Liu SK, 2024, NAT COMMUN, V15, DOI 10.1038/s41467-024-49492-7
[52]   CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment [J].
Ma, Zesong ;
Yang, Zhilong ;
Lai, Wenchuan ;
Wang, Qiyou ;
Qiao, Yan ;
Tao, Haolan ;
Lian, Cheng ;
Liu, Min ;
Ma, Chao ;
Pan, Anlian ;
Huang, Hongwen .
NATURE COMMUNICATIONS, 2022, 13 (01)
[53]   Electrolyte Effects on CO2 Electrochemical Reduction to CO [J].
Marcandalli, Giulia ;
Monteiro, Mariana C. O. ;
Goyal, Akansha ;
Koper, Marc T. M. .
ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (14) :1900-1911
[54]   Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X-ray Absorption Spectroscopy and Machine Learning [J].
Martini, Andrea ;
Hursan, Dorottya ;
Timoshenko, Janis ;
Ruescher, Martina ;
Haase, Felix ;
Rettenmaier, Clara ;
Ortega, Eduardo ;
Etxebarria, Ane ;
Roldan Cuenya, Beatriz .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (31) :17351-17366
[55]   Assessment of the Degradation Mechanisms of Cu Electrodes during the CO2 Reduction Reaction [J].
Mom, Rik V. ;
Sandoval-Diaz, Luis-Ernesto ;
Gao, Dunfeng ;
Chuang, Cheng-Hao ;
Carbonio, Emilia A. ;
Jones, Travis E. ;
Arrigo, Rosa ;
Ivanov, Danail ;
Haevecker, Michael ;
Roldan Cuenya, Beatriz ;
Schloegl, Robert ;
Lunkenbein, Thomas ;
Knop-Gericke, Axel ;
Velasco-Velez, Juan-Jesus .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (25) :30052-30059
[56]   Electrolyte Effects on the Electrochemical Reduction of CO2 [J].
Moura de Salles Pupo, Marilia ;
Kortlever, Ruud .
CHEMPHYSCHEM, 2019, 20 (22) :2926-2935
[57]   Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO [J].
Mun, Yeongdong ;
Lee, Seunghyun ;
Cho, Ara ;
Kim, Seongbeen ;
Han, Jeong Woo ;
Lee, Jinwoo .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 :82-88
[58]   Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte [J].
Nitopi, Stephanie ;
Bertheussen, Erlend ;
Scott, Soren B. ;
Liu, Xinyan ;
Engstfeld, Albert K. ;
Horch, Sebastian ;
Seger, Brian ;
Stephens, Ifan E. L. ;
Chan, Karen ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. ;
Chorkendorff, Ib .
CHEMICAL REVIEWS, 2019, 119 (12) :7610-7672
[59]   Towards accelerated durability testing protocols for CO2 electrolysis [J].
Nwabara, U. O. ;
de Heer, M. P. ;
Cofell, E. R. ;
Verma, S. ;
Negro, E. ;
Kenis, Paul J. A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (43) :22557-22571
[60]   On the mobility of carbon-supported platinum nanoparticles towards unveiling cathode degradation in water electrolysis [J].
Paciok, Paul ;
Schalenbach, Maximilian ;
Carmo, Marcelo ;
Stolten, Detlef .
JOURNAL OF POWER SOURCES, 2017, 365 :53-60