Deep Learning-Based Detection for Marker Codes Over Insertion and Deletion Channels

被引:1
|
作者
Ma, Guochen [1 ]
Jiao, Xiaopeng [1 ]
Mu, Jianjun [1 ]
Han, Hui [1 ]
Yang, Yaming [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Bidirectional gated recurrent unit (bi-GRU); deep unfolding; insertions and deletions; marker codes; model-driven deep learning; RELIABLE COMMUNICATION; CORRECTING CODES; SYNCHRONIZATION;
D O I
10.1109/TCOMM.2024.3394039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Marker code is an effective coding scheme to protect data from insertions and deletions. It has potential applications in future storage systems, such as DNA storage and racetrack memory. When decoding marker codes, perfect channel state information (CSI), i.e., insertion and deletion probabilities, are required to detect insertion and deletion errors. Sometimes, the perfect CSI is not easy to obtain or the accurate channel model is unknown. Therefore, it is deserved to develop detecting algorithms for marker code without the knowledge of perfect CSI. In this paper, we propose two CSI-agnostic detecting algorithms for marker code based on deep learning. The first one is a model-driven deep learning method, which deep unfolds the original iterative detecting algorithm of marker code. In this method, CSI become weights in neural networks and these weights can be learned from training data. The second one is a data-driven method which is an end-to-end system based on the deep bidirectional gated recurrent unit network. Simulation results show that error performances of the proposed methods are significantly better than that of the original detection algorithm with CSI uncertainty. Furthermore, the proposed data-driven method exhibits better error performances than other methods for unknown channel models.
引用
收藏
页码:5945 / 5959
页数:15
相关论文
共 50 条
  • [41] Deep learning-based automated speech detection as a marker of social functioning in late-life depression
    Little, Bethany
    Alshabrawy, Ossama
    Stow, Daniel
    Ferrier, I. Nicol
    McNaney, Roisin
    Jackson, Daniel G.
    Ladha, Karim
    Ladha, Cassim
    Ploetz, Thomas
    Bacardit, Jaume
    Olivier, Patrick
    Gallagher, Peter
    O'Brien, John T.
    PSYCHOLOGICAL MEDICINE, 2021, 51 (09) : 1441 - 1450
  • [42] Deep learning-based detection of dental prostheses and restorations
    Takahashi, Toshihito
    Nozaki, Kazunori
    Gonda, Tomoya
    Mameno, Tomoaki
    Ikebe, Kazunori
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [43] Deep learning-based Mango Fruit Detection and Counting
    Chanda, Apisak
    Voraseyanont, Parameth
    Siricharoen, Punnarai
    2024 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, ECTI-CON 2024, 2024,
  • [44] Deep Learning-Based Algorithm for Road Defect Detection
    Li, Shaoxiang
    Zhang, Dexiang
    SENSORS, 2025, 25 (05)
  • [45] Deep Learning-based Joint Symbol Detection for NOMA
    Emir, Ahmet
    Kara, Ferdi
    Kaya, Hakan
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [46] Deep Learning-Based Weed Detection in Turf: A Review
    Jin, Xiaojun
    Liu, Teng
    Chen, Yong
    Yu, Jialin
    AGRONOMY-BASEL, 2022, 12 (12):
  • [47] Deep learning-based fabric defect detection: A review
    Kahraman, Yavuz
    Durmusoglu, Alptekin
    TEXTILE RESEARCH JOURNAL, 2023, 93 (5-6) : 1485 - 1503
  • [48] A survey on deep learning-based image forgery detection
    Mehrjardi, Fatemeh Zare
    Latif, Ali Mohammad
    Zarchi, Mohsen Sardari
    Sheikhpour, Razieh
    PATTERN RECOGNITION, 2023, 144
  • [49] Deep learning-based small object detection: A survey
    Feng, Qihan
    Xu, Xinzheng
    Wang, Zhixiao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 6551 - 6590
  • [50] A survey of deep learning-based network anomaly detection
    Kwon, Donghwoon
    Kim, Hyunjoo
    Kim, Jinoh
    Suh, Sang C.
    Kim, Ikkyun
    Kim, Kuinam J.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 949 - 961