Harnessing multi-resolution and multi-scale attention for underwater image restoration

被引:0
|
作者
Pramanick, Alik [1 ]
Sur, Arijit [1 ]
Saradhi, V. Vijaya [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Comp Sci & Engn, Gauhati, India
关键词
Underwater image enhancement; Super-resolution; Multi-scale; Multi-resolution; Channel-specific loss; ENHANCEMENT; SUPERRESOLUTION;
D O I
10.1007/s00371-025-03866-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Underwater imagery is often compromised by factors such as color distortion and low contrast, posing challenges for high-level vision tasks. Recent underwater image restoration methods either analyze the input image at full resolution, resulting in spatial richness but contextual weakness, or progressively from high to low resolution, yielding reliable semantic information but reduced spatial accuracy. Here, we propose a lightweight multi-stage network called Lit-Net that focuses on multi-resolution and multi-scale image analysis for restoring underwater images while retaining original resolution during the first stage, refining features in the second, and focusing on reconstruction in the final stage. Our novel encoder block utilizes parallel 1x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\times 1$$\end{document} convolution layers to capture local information and speed up operations. Further, we incorporate a modified weighted color channel-specific l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} loss (cl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cl_1$$\end{document}) function to recover color and detail information. Extensive experimentations on publicly available datasets suggest our model's superiority over recent state-of-the-art methods, with significant improvement in qualitative and quantitative measures, such as 29.477 dB PSNR (1.92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.92\%$$\end{document} improvement) and 0.851 SSIM (2.87%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.87\%$$\end{document} improvement) on the EUVP dataset. The contributions of Lit-Net offer a more robust approach to underwater image enhancement and super-resolution, which is of considerable importance for underwater autonomous vehicles and surveillance. The code is available at: https://github.com/Alik033/Lit-Net.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Color correction and restoration based on multi-scale recursive network for underwater optical image
    Huang, Yifan
    Liu, Manyu
    Yuan, Fei
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 93
  • [42] Multi-scale feature aggregation network for Image super-resolution
    Chen, Wenlong
    Yao, Pengcheng
    Gai, Shaoyan
    Da, Feipeng
    APPLIED INTELLIGENCE, 2022, 52 (04) : 3577 - 3586
  • [43] Multi-scale feature aggregation network for Image super-resolution
    Wenlong Chen
    Pengcheng Yao
    Shaoyan Gai
    Feipeng Da
    Applied Intelligence, 2022, 52 : 3577 - 3586
  • [44] Image Super-Resolution Reconstruction Based on Lightweight Multi-Scale Channel Attention Network
    Zhou D.-W.
    Li W.-B.
    Li J.-X.
    Huang Z.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2336 - 2346
  • [45] Super resolution reconstruction of CT images based on multi-scale attention mechanism
    Yin, Jian
    Xu, Shao-Hua
    Du, Yan-Bin
    Jia, Rui-Sheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (15) : 22651 - 22667
  • [46] Efficient Multi-Scale Cosine Attention Transformer for Image Super-Resolution
    Chen, Yuzhen
    Wang, Gencheng
    Chen, Rong
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1442 - 1446
  • [47] Attention-enhanced multi-scale residual network for single image super-resolution
    Yubin Sun
    Jiongming Qin
    Xuliang Gao
    Shuiqin Chai
    Bin Chen
    Signal, Image and Video Processing, 2022, 16 : 1417 - 1424
  • [48] Multi-scale self-attention generative adversarial network for pathology image restoration
    Liang, Meiyan
    Zhang, Qiannan
    Wang, Guogang
    Xu, Na
    Wang, Lin
    Liu, Haishun
    Zhang, Cunlin
    VISUAL COMPUTER, 2023, 39 (09) : 4305 - 4321
  • [49] Multi-scale self-attention generative adversarial network for pathology image restoration
    Meiyan Liang
    Qiannan Zhang
    Guogang Wang
    Na Xu
    Lin Wang
    Haishun Liu
    Cunlin Zhang
    The Visual Computer, 2023, 39 : 4305 - 4321
  • [50] Attention-enhanced multi-scale residual network for single image super-resolution
    Sun, Yubin
    Qin, Jiongming
    Gao, Xuliang
    Chai, Shuiqin
    Chen, Bin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1417 - 1424