Harnessing multi-resolution and multi-scale attention for underwater image restoration

被引:0
|
作者
Pramanick, Alik [1 ]
Sur, Arijit [1 ]
Saradhi, V. Vijaya [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Comp Sci & Engn, Gauhati, India
关键词
Underwater image enhancement; Super-resolution; Multi-scale; Multi-resolution; Channel-specific loss; ENHANCEMENT; SUPERRESOLUTION;
D O I
10.1007/s00371-025-03866-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Underwater imagery is often compromised by factors such as color distortion and low contrast, posing challenges for high-level vision tasks. Recent underwater image restoration methods either analyze the input image at full resolution, resulting in spatial richness but contextual weakness, or progressively from high to low resolution, yielding reliable semantic information but reduced spatial accuracy. Here, we propose a lightweight multi-stage network called Lit-Net that focuses on multi-resolution and multi-scale image analysis for restoring underwater images while retaining original resolution during the first stage, refining features in the second, and focusing on reconstruction in the final stage. Our novel encoder block utilizes parallel 1x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\times 1$$\end{document} convolution layers to capture local information and speed up operations. Further, we incorporate a modified weighted color channel-specific l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} loss (cl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cl_1$$\end{document}) function to recover color and detail information. Extensive experimentations on publicly available datasets suggest our model's superiority over recent state-of-the-art methods, with significant improvement in qualitative and quantitative measures, such as 29.477 dB PSNR (1.92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.92\%$$\end{document} improvement) and 0.851 SSIM (2.87%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.87\%$$\end{document} improvement) on the EUVP dataset. The contributions of Lit-Net offer a more robust approach to underwater image enhancement and super-resolution, which is of considerable importance for underwater autonomous vehicles and surveillance. The code is available at: https://github.com/Alik033/Lit-Net.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Incorporating Triple Attention and Multi-scale Pyramid Network for Underwater Image Enhancement
    Sun, Kaichuan
    Tian, Yubo
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (03) : 387 - 397
  • [32] Underwater Image Enhancement Based on Multi-Scale Feature Fusion and Attention Network
    Liu Y.
    Liu M.
    Lin S.
    Tao Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (05): : 685 - 695
  • [33] Generative adversarial networks with multi-scale and attention mechanisms for underwater image enhancement
    Wang, Ziyang
    Zhao, Liquan
    Zhong, Tie
    Jia, Yanfei
    Cui, Ying
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [34] New multi-resolution and multi-scale electromagnetic detection methods for urban underground spaces
    Li Wenhan
    Lu Kailiang
    Li He
    Cui Hongliang
    Li Xiu
    JOURNAL OF APPLIED GEOPHYSICS, 2018, 159 : 742 - 753
  • [36] Mural Image Super Resolution Reconstruction Based on Multi-Scale Residual Attention Network
    Xu Zhigang
    Yan Juanjuan
    Zhu Honglei
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (16)
  • [37] Single image super-resolution based on multi-scale dense attention network
    Farong Gao
    Yong Wang
    Zhangyi Yang
    Yuliang Ma
    Qizhong Zhang
    Soft Computing, 2023, 27 : 2981 - 2992
  • [38] MLWAN: Multi-Scale Learning Wavelet Attention Module Network for Image Super Resolution
    Ma, Jian
    Han, Xiyu
    Zhang, Xiaoyin
    Li, Zhipeng
    SENSORS, 2022, 22 (23)
  • [39] Image Super-Resolution Based on Residual Attention and Multi-Scale Feature Fusion
    Kou, Qiqi
    Zhao, Jiamin
    Cheng, Deqiang
    Su, Zhen
    Zhu, Xingguang
    IEEE ACCESS, 2023, 11 : 59530 - 59541
  • [40] Single image super-resolution based on multi-scale dense attention network
    Gao, Farong
    Wang, Yong
    Yang, Zhangyi
    Ma, Yuliang
    Zhang, Qizhong
    SOFT COMPUTING, 2023, 27 (06) : 2981 - 2992