Harnessing multi-resolution and multi-scale attention for underwater image restoration

被引:0
|
作者
Pramanick, Alik [1 ]
Sur, Arijit [1 ]
Saradhi, V. Vijaya [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Comp Sci & Engn, Gauhati, India
关键词
Underwater image enhancement; Super-resolution; Multi-scale; Multi-resolution; Channel-specific loss; ENHANCEMENT; SUPERRESOLUTION;
D O I
10.1007/s00371-025-03866-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Underwater imagery is often compromised by factors such as color distortion and low contrast, posing challenges for high-level vision tasks. Recent underwater image restoration methods either analyze the input image at full resolution, resulting in spatial richness but contextual weakness, or progressively from high to low resolution, yielding reliable semantic information but reduced spatial accuracy. Here, we propose a lightweight multi-stage network called Lit-Net that focuses on multi-resolution and multi-scale image analysis for restoring underwater images while retaining original resolution during the first stage, refining features in the second, and focusing on reconstruction in the final stage. Our novel encoder block utilizes parallel 1x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\times 1$$\end{document} convolution layers to capture local information and speed up operations. Further, we incorporate a modified weighted color channel-specific l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} loss (cl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cl_1$$\end{document}) function to recover color and detail information. Extensive experimentations on publicly available datasets suggest our model's superiority over recent state-of-the-art methods, with significant improvement in qualitative and quantitative measures, such as 29.477 dB PSNR (1.92%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.92\%$$\end{document} improvement) and 0.851 SSIM (2.87%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.87\%$$\end{document} improvement) on the EUVP dataset. The contributions of Lit-Net offer a more robust approach to underwater image enhancement and super-resolution, which is of considerable importance for underwater autonomous vehicles and surveillance. The code is available at: https://github.com/Alik033/Lit-Net.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Multi-scale Underwater Image Enhancement Network Based on Attention Mechanism
    Fang Ming
    Liu Xiaohan
    Fu Feiran
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (12) : 3513 - 3521
  • [22] Underwater Image Enhancement Based on Multi-Scale Attention and Contrast Learning
    Wang Yue
    Fan Huijie
    Liu Shiben
    Tang Yandong
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (04)
  • [23] Underwater image enhancement synthesizing multi-scale information and attention mechanisms
    Xia X.
    Zhong Y.
    Hu P.
    Yao Y.
    Geng J.
    Zhang L.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (10): : 1582 - 1594
  • [24] A lightweight multi-scale channel attention network for image super-resolution
    Li, Wenbin
    Li, Juefei
    Li, Jinxin
    Huang, Zhiyong
    Zhou, Dengwen
    NEUROCOMPUTING, 2021, 456 : 327 - 337
  • [25] Lightweight multi-scale residual networks with attention for image super-resolution
    Liu, Huan
    Cao, Feilong
    Wen, Chenglin
    Zhang, Qinghua
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [26] Image super-resolution network based on multi-scale adaptive attention
    Zhou Y.
    Pei S.
    Chen H.
    Xu S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 843 - 856
  • [27] Mixed multi-scale residual attention networks for single image super-resolution reconstruction
    Zhang, Liyun
    Zhang, Ming
    Fan, Fei
    Liu, Yang
    MULTIMEDIA SYSTEMS, 2025, 31 (03)
  • [28] Wide Weighted Attention Multi-Scale Network for Accurate MR Image Super-Resolution
    Wang, Haoqian
    Hu, Xiaowan
    Zhao, Xiaole
    Zhang, Yulun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 962 - 975
  • [29] A Multi-Scale Convolutional Hybrid Attention Residual Network for Enhancing Underwater Image and Identifying Underwater Multi-Scene Sea Cucumber
    Zhang, Lijun
    Ma, Zhe
    Zhou, Jixu
    Li, Kewei
    Li, Ming
    Wang, Hang
    Zhang, Qiang
    Wang, Chen
    Lu, Kunyuan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7397 - 7404
  • [30] Lightweight Image Super-Resolution by Multi-Scale Aggregation
    Wan, Jin
    Yin, Hui
    Liu, Zhihao
    Chong, Aixin
    Liu, Yanting
    IEEE TRANSACTIONS ON BROADCASTING, 2021, 67 (02) : 372 - 382