Multipopulation mathematical modeling of vaccination campaign of COVID-19 in Cuba

被引:0
作者
Guinovart-Diaz, Raul [1 ]
Morales-Lezca, Wilfredo [1 ]
Abello-Ugalde, Isidro [2 ]
Bravo-Castillero, Julian [3 ]
Vajravelu, Kuppalapalle [4 ]
Guinovart, David [5 ]
机构
[1] Univ La Habana, Fac Matemat & Comp, Havana, Cuba
[2] Univ La Habana, Ctr Estudios Perfeccionamiento Educ Super CEPES, Havana, Cuba
[3] Univ Nacl Autonoma Mexico, Unidad Academ, Inst Invest & Matemat Aplicadas Sistemas Estado Yu, Merida, Mexico
[4] Univ Cent Florida, Dept Math, Orlando, FL USA
[5] Univ Minnesota, Hormel Inst, 801 16th Ave NE, Austin, MN 55912 USA
关键词
Dynamical systems; COVID-19; SIR Model; Pandemic Simulation; epidemiology; Transmission Dynamics; Multi-Population Approach; EPIDEMIC; DISEASE; SIR;
D O I
10.1080/02286203.2025.2457762
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cuba is facing a severe COVID-19 outbreak despite its efforts to contain the virus and vaccinate its population. We present a computational analysis using a modified multi-population compartmental model (SIR) to simulate the pandemic in Cuba under different scenarios. Additionally, we develop and analyze multi-population SIRV (Susceptible, Infected, Recovered, Vaccinated) and SIQRDV (Susceptible, Infected, Quarantined, Recovered, Deceased, Vaccinated) models specific to the Cuban context. This study integrates real-world vaccination data, including locally developed vaccines, and considers regional differences in vaccination coverage and age-specific outcomes. Our model evaluates the impact of the vaccination program on infection rates, considering vaccine efficacy and coverage while comparing the outcomes of different measures on transmission dynamics. Results indicate that vaccination and non-pharmacologic interventions can significantly reduce infections and deaths.
引用
收藏
页数:22
相关论文
共 43 条
[1]   SOME DISCRETE-TIME SI, SIR, AND SIS EPIDEMIC MODELS [J].
ALLEN, LJS .
MATHEMATICAL BIOSCIENCES, 1994, 124 (01) :83-105
[2]   How will country-based mitigation measures influence the course of the COVID-19 epidemic? [J].
Anderson, Roy M. ;
Heesterbeek, Hans ;
Klinkenberg, Don ;
Hollingsworth, T. Deirdre .
LANCET, 2020, 395 (10228) :931-934
[3]   Comorbidities and the COVID-19 pandemic dynamics in Africa [J].
Anjorin, A. A. ;
Abioye, A. I. ;
Asowata, O. E. ;
Soipe, A. ;
Kazeem, M. I. ;
Adesanya, I. O. ;
Raji, M. A. ;
Adesanya, M. ;
Oke, F. A. ;
Lawal, F. J. ;
Kasali, B. A. ;
Omotayo, M. O. .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2021, 26 (01) :2-13
[4]  
[Anonymous], 2023, Covid-19 Data Explorer
[5]   Dengue and COVID-19, overlapping epidemics? An analysis from Colombia [J].
Cardona-Ospina, Jaime A. ;
Arteaga-Livias, Kovy ;
Villamil-Gomez, Wilmer E. ;
Perez-Diaz, Carlos E. ;
Katterine Bonilla-Aldana, D. ;
Mondragon-Cardona, Alvaro ;
Solarte-Portilla, Marco ;
Martinez, Ernesto ;
Millan-Onate, Jose ;
Lopez-Medina, Eduardo ;
Lopez, Pio ;
Navarro, Juan-Carlos ;
Perez-Garcia, Luis ;
Mogollon-Rodriguez, Euler ;
Rodriguez-Morales, Alfonso J. ;
Paniz-Mondolfi, Alberto .
JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (01) :522-527
[6]   Model-based forecasting for Canadian COVID-19 data [J].
Chen, Li-Pang ;
Zhang, Qihuang ;
Yi, Grace Y. ;
He, Wenqing .
PLOS ONE, 2021, 16 (01)
[7]   A SIR model assumption for the spread of COVID-19 in different communities [J].
Cooper, Ian ;
Mondal, Argha ;
Antonopoulos, Chris G. .
CHAOS SOLITONS & FRACTALS, 2020, 139
[8]   Commentary on Ferguson, et al., "Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand" [J].
Eubank, S. ;
Eckstrand, I ;
Lewis, B. ;
Venkatramanan, S. ;
Marathe, M. ;
Barrett, C. L. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2020, 82 (04)
[9]   A mathematical model for COVID-19 considering waning immunity, vaccination and control measures [J].
Ghosh, Subhas Kumar ;
Ghosh, Sachchit .
SCIENTIFIC REPORTS, 2023, 13 (01)
[10]   Clinical Characteristics of Coronavirus Disease 2019 in China [J].
Guan, W. ;
Ni, Z. ;
Hu, Yu ;
Liang, W. ;
Ou, C. ;
He, J. ;
Liu, L. ;
Shan, H. ;
Lei, C. ;
Hui, D. S. C. ;
Du, B. ;
Li, L. ;
Zeng, G. ;
Yuen, K. -Y. ;
Chen, R. ;
Tang, C. ;
Wang, T. ;
Chen, P. ;
Xiang, J. ;
Li, S. ;
Wang, Jin-lin ;
Liang, Z. ;
Peng, Y. ;
Wei, L. ;
Liu, Y. ;
Hu, Ya-hua ;
Peng, P. ;
Wang, Jian-ming ;
Liu, J. ;
Chen, Z. ;
Li, G. ;
Zheng, Z. ;
Qiu, S. ;
Luo, J. ;
Ye, C. ;
Zhu, S. ;
Zhong, N. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18) :1708-1720