Generalized semidirect sums of Lie algebras and their modules

被引:0
作者
Lu, Rui [1 ]
Tan, Youjun [2 ]
机构
[1] Chengdu Normal Univ, Coll Math, 99 East Haike Rd, Chengdu 611130, Peoples R China
[2] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
关键词
Lie algebra; module; generalized semidirect sum; NON-ABELIAN COHOMOLOGY; EXTENSIONS;
D O I
10.21136/CMJ.2025.0396-24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized semidirect sums of Lie algebras and their modules are introduced, which are not necessarily (non)-Abelian extensions and may be applied to construct Lie algebras from modules. Some properties of generalized semidirect sums are described. In particular, it is shown that finite dimensional non-solvable Lie algebras can be realized as generalized semidirect sums. The complete classification up to isomorphism of all generalized semidirect sums of sl2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{sl}_2$$\end{document} and its finite-dimensional irreducible modules is given.
引用
收藏
页码:699 / 742
页数:44
相关论文
共 10 条
[1]  
Bressler P., 2012, So Paulo J. Math. Sci, V6, P71, DOI [10.11606/issn.2316-9028.v6i1p71-80, DOI 10.11606/ISSN.2316-9028.V6I1P71-80]
[2]  
Carter R., 2005, Lie Algebras of Finite and Affine Type, V96, DOI 10.1017/CBO9780511614910
[3]   Non-abelian cohomology of extensions of Lie algebras as Deligne groupoid [J].
Fregier, Yael .
JOURNAL OF ALGEBRA, 2014, 398 :243-257
[4]  
Humphreys Hum72 J. E., 1972, Grad. Texts Math., V9, DOI DOI 10.1007/978-1-4612-6398-2
[5]  
Inassaridze N, 2008, J LIE THEORY, V18, P413
[6]  
Moody R V., 1995, Lie Algebras with Triangular Decompositions
[7]   Non-Abelian extensions of topological lie algebras [J].
Neeb, KH .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) :991-1041
[8]  
Onishchik A L., 1993, Foundations of Lie theory. Lie Groups and Lie Algebras I. Foundations of Lie theory. Lie Transformation Groups, V20, P1
[9]  
Onishchik A L., 1994, Lie Groups and Lie Algebras III. Structure of Lie Groups and Lie Algebras, V41
[10]  
Weibel C. A., 1994, INTRO HOMOLOGICAL AL, DOI [10.1017/CBO9781139644136, DOI 10.1017/CBO9781139644136]