Advanced all-optical classification using orbital-angular-momentum-encoded diffractive networks

被引:15
作者
Zhang, Kuo [1 ]
Liao, Kun [2 ]
Cheng, Haohang [1 ]
Feng, Shuai [1 ]
Hu, Xiaoyong [2 ,3 ,4 ]
机构
[1] Minzu Univ China, Sch Sci, Beijing, Peoples R China
[2] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Dept Phys, Nanooptoelect Frontier Ctr,Minist Educ,State Key L, Beijing, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan, Peoples R China
[4] Peking Univ, Yangtze Delta Inst Optoelect, Nantong, Peoples R China
来源
ADVANCED PHOTONICS NEXUS | 2023年 / 2卷 / 06期
基金
中国国家自然科学基金;
关键词
diffractive deep neural network; deep learning; orbital angular momentum multiplexing; optical classification; NEURAL-NETWORK; SCALE; INTELLIGENCE;
D O I
10.1117/1.APN.2.6.066006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
As a successful case of combining deep learning with photonics, the research on optical machine learning has recently undergone rapid development. Among various optical classification frameworks, diffractive networks have been shown to have unique advantages in all-optical reasoning. As an important property of light, the orbital angular momentum (OAM) of light shows orthogonality and mode-infinity, which can enhance the ability of parallel classification in information processing. However, there have been few all-optical diffractive networks under the OAM mode encoding. Here, we report a strategy of OAM-encoded diffractive deep neural network (OAM-encoded (DNN)-N-2) that encodes the spatial information of objects into the OAM spectrum of the diffracted light to perform all-optical object classification. We demonstrated three different OAM-encoded D(2)NNs to realize (1) single detector OAM-encoded (DNN)-N-2 for single task classification, (2) single detector OAM-encoded (DNN)-N-2 for multitask classification, and (3) multidetector OAM-encoded (DNN)-N-2 for repeatable multitask classification. We provide a feasible way to improve the performance of all-optical object classification and open up promising research directions for (DNN)-N-2 by proposing OAM-encoded (DNN)-N-2.
引用
收藏
页数:14
相关论文
共 70 条
[1]   Unscrambling light-automatically undoing strong mixing between modes [J].
Annoni, Andrea ;
Guglielmi, Emanuele ;
Carminati, Marco ;
Ferrari, Giorgio ;
Sampietro, Marco ;
Miller, David A. B. ;
Melloni, Andrea ;
Morichetti, Francesco .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e17110-e17110
[2]   Towards 3nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography - art. no. 692404 [J].
Arnold, William H. .
OPTICAL MICROLITHOGRAPHY XXI, PTS 1-3, 2008, 6924 :92404-92404
[3]   All-optical image classification through unknown random diffusers using a single-pixel diffractive network [J].
Bai, Bijie ;
Li, Yuhang ;
Luo, Yi ;
Li, Xurong ;
Cetintas, Ege ;
Jarrahi, Mona ;
Ozcan, Aydogan .
LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
[4]  
Batra G., 2019, Artificial-Intelligence Hardware: New Opportunities for Semiconductor Companies
[5]   Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J].
Bozinovic, Nenad ;
Yue, Yang ;
Ren, Yongxiong ;
Tur, Moshe ;
Kristensen, Poul ;
Huang, Hao ;
Willner, Alan E. ;
Ramachandran, Siddharth .
SCIENCE, 2013, 340 (6140) :1545-1548
[6]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[7]   Why future supercomputing requires optics [J].
Caulfield, H. John ;
Dolev, Shlomi .
NATURE PHOTONICS, 2010, 4 (05) :261-263
[8]   Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission [J].
Chen, Yitong ;
Zhou, Tiankuang ;
Wu, Jiamin ;
Qiao, Hui ;
Lin, Xing ;
Fang, Lu ;
Dai, Qionghai .
SCIENCE ADVANCES, 2023, 9 (07)
[9]   Optical multi-task learning using multi-wavelength diffractive deep neural networks [J].
Duan, Zhengyang ;
Chen, Hang ;
Lin, Xing .
NANOPHOTONICS, 2023, 12 (05) :893-903
[10]   Orbital angular momentum holography for high-security encryption [J].
Fang, Xinyuan ;
Ren, Haoran ;
Gu, Min .
NATURE PHOTONICS, 2020, 14 (02) :102-+