New Inequalities for Differentiable Mappings via Fractional Integral Operators

被引:0
作者
Almutairi, Ohud Bulayhan [1 ]
机构
[1] Univ Hafr Al Batin, Dept Math, Hafar al Batin 31991, Saudi Arabia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2025年 / 18卷 / 01期
关键词
Riemann-Liouville integrals; Holder's inequality; Integral inequality; (p; s; m)-convex functions; NONCOMPACTNESS;
D O I
10.29020/nybg.ejpam.v18i1.5834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, explicit bounds for the midpoint type inequalities for functions whose twice differentiable in absolute value raised to positive real powers are (rho, s) and (rho, s, m)- convexities are explored through the integral fractional operator. Several estimate for special functions including Euler gamma, incomplete Beta and hypergeometric functions are presented in the study.
引用
收藏
页数:12
相关论文
共 22 条
[1]   Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals [J].
Agarwal, Praveen ;
Jleli, Mohamed ;
Tomar, Muharrem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[2]   New fractional integral inequalities via Euler's beta function [J].
Almutairi, Ohud Bulayhan .
OPEN MATHEMATICS, 2023, 21 (01)
[3]  
[Anonymous], 1994, Inequalities and applications
[4]  
Bainov D.D., 2013, Integral inequalities and applications, V57
[5]   FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS [J].
Budak, Huseyin ;
Tunc, Tuba ;
Sarikaya, Mehmet Zeki .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) :705-718
[6]   Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals [J].
Du, Tingsong ;
Peng, Yu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
[7]  
Farid Ghulam, 2021, Advances in Difference Equations, P1
[8]  
Hudzik H., 1994, Aequationes Math., V48, P100, DOI DOI 10.1007/BF01837981
[9]  
Kilbas AA., 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[10]   On the measure of noncompactness in Lp(R plus ) and applications to a product of n-integral equations [J].
Metwali, Mohamed M. A. ;
Mishra, Vishnu Narayan .
TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (01) :372-386