Global existence of mild solutions for 3D stochastic Boussinesq system in Besov spaces

被引:0
作者
Sun, Jinyi [1 ]
Li, Ning [1 ,2 ]
Yang, Minghua [3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Ningxia Normal Univ, Grad Sch, Guyuan, Peoples R China
[3] Jiangxi Univ Finance & Econ, Dept Math, Nanchang, Peoples R China
基金
中国国家自然科学基金;
关键词
global solutions; stochastic Boussinesq system; NAVIER-STOKES EQUATIONS; 3-DIMENSIONAL PRIMITIVE EQUATIONS; WELL-POSEDNESS; REGULARITY; THEOREM;
D O I
10.1002/mana.202300526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the three-dimensional stochastic Boussinesq system driven by an additive white noise, describing the motion of viscous incompressible fluids with density stratification phenomenon in the rotational framework. By striking new balances between the smoothing effects of the Laplacian dissipation and dispersion effects caused by the Coriolis force and density stratification, we prove existence and uniqueness of global mild solutions to the three-dimensional stochastic Boussinesq system for arbitrarily large initial data and stochastic external forces in Besov spaces, provided that the stratification parameter is large enough. Our results can be regarded as a generalization of [Math. Nachr. 290(2017), 613-631] and [Indiana Univ. Math. J. 66(2017), 2037-2070].
引用
收藏
页码:1105 / 1126
页数:22
相关论文
共 50 条
[41]   Global existence and Gevrey analyticity of the Debye-Huckel system in critical Besov-Morrey spaces [J].
El Idrissi, Ahmed ;
Srhiri, Halima ;
El Boukari, Brahim ;
El Ghordaf, Jalila .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 1600, 0 (01) :2345-2641-2008-1081
[42]   GLOBAL WELL-POSEDNESS FOR THE 3-D BOUSSINESQ SYSTEM WITH DAMPING [J].
Yue, Gaocheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (09) :4826-4846
[43]   GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES [J].
Zhai, Xiaoping ;
Li, Yongsheng ;
Yan, Wei .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) :1865-1884
[44]   Existence of periodic solutions of Boussinesq system [J].
Li, Hengyan ;
Gu, Liuxin .
BOUNDARY VALUE PROBLEMS, 2016, :1-15
[45]   Global existence of weak solutions to 3D compressible primitive equations with degenerate viscosity [J].
Wang, Fengchao ;
Dou, Changsheng ;
Jiu, Quansen .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (02)
[46]   Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces [J].
Zhai, Xiaoping ;
Li, Yongsheng ;
Yan, Wei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) :179-195
[47]   Global Existence of Large Solutions for the 3D Coupled Chemotaxis-Fluid Equations [J].
Cai, Zhongbo ;
Zhao, Jihong .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (02)
[48]   The global existence and analyticity of a mild solution to the 3D regularized MHD equations [J].
Xiao, Cuntao ;
Qiu, Hua ;
Yao, Zheng-an .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) :973-983
[49]   Local existence and blow-up criterion for the generalized Boussinesq equations in Besov spaces [J].
Qiu, Hua ;
Du, Yi ;
Yao, Zheng'an .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (01) :86-98
[50]   Blow-up criteria for the 3D B,nard system in Besov spaces [J].
Ma, Liangliang ;
Zhang, Lei .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)