Global existence of mild solutions for 3D stochastic Boussinesq system in Besov spaces

被引:0
作者
Sun, Jinyi [1 ]
Li, Ning [1 ,2 ]
Yang, Minghua [3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Ningxia Normal Univ, Grad Sch, Guyuan, Peoples R China
[3] Jiangxi Univ Finance & Econ, Dept Math, Nanchang, Peoples R China
基金
中国国家自然科学基金;
关键词
global solutions; stochastic Boussinesq system; NAVIER-STOKES EQUATIONS; 3-DIMENSIONAL PRIMITIVE EQUATIONS; WELL-POSEDNESS; REGULARITY; THEOREM;
D O I
10.1002/mana.202300526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the three-dimensional stochastic Boussinesq system driven by an additive white noise, describing the motion of viscous incompressible fluids with density stratification phenomenon in the rotational framework. By striking new balances between the smoothing effects of the Laplacian dissipation and dispersion effects caused by the Coriolis force and density stratification, we prove existence and uniqueness of global mild solutions to the three-dimensional stochastic Boussinesq system for arbitrarily large initial data and stochastic external forces in Besov spaces, provided that the stratification parameter is large enough. Our results can be regarded as a generalization of [Math. Nachr. 290(2017), 613-631] and [Indiana Univ. Math. J. 66(2017), 2037-2070].
引用
收藏
页码:1105 / 1126
页数:22
相关论文
共 50 条
[31]   LONG-TIME SOLVABILITY IN BESOV SPACES FOR THE INVISCID 3D-BOUSSINESQ-CORIOLIS EQUATIONS [J].
Angulo-Castillo, Vladimir ;
Ferreira, Lucas C. F. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (12) :4553-4573
[32]   Global existence of the 3D rotating second grade fluid system [J].
Jaffal-Mourtada, Basma .
ASYMPTOTIC ANALYSIS, 2021, 124 (3-4) :259-290
[33]   An Improved Regularity Criterion for the 3D Magnetic Benard System in Besov Spaces [J].
Naqeeb, Muhammad ;
Hussain, Amjad ;
Alghamdi, Ahmad M. .
SYMMETRY-BASEL, 2022, 14 (09)
[34]   Global dynamics of Kato's solutions for the 3D incompressible micropolar system [J].
Song, Zihao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 403 :158-187
[35]   ON THE 3D EULER EQUATIONS WITH CORIOLIS FORCE IN BORDERLINE BESOV SPACES* [J].
Angulo-Castillo, Vladimir ;
Ferreira, Lucas C. F. .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (01) :145-164
[36]   Global existence and decay estimates of solutions to the MHD-Boussinesq system with stratification effects [J].
Li, Xinliang ;
Tan, Zhong ;
Xu, Saiguo .
NONLINEARITY, 2022, 35 (12) :6067-6097
[37]   Global martingale solution for the stochastic Boussinesq system with zero dissipation [J].
Yamazaki, Kazuo .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2016, 34 (03) :404-426
[38]   Existence in critical spaces for the magnetohydrodynamical system in 3D bounded Lipschitz domains [J].
Monniaux, Sylvie .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) :311-322
[39]   A remark on the blow-up criterion for the 3D Hall-MHD system in Besov spaces [J].
Zhang, Zujin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) :692-701
[40]   Global existence and Gevrey analyticity of the Debye-Huckel system in critical Besov-Morrey spaces [J].
El Idrissi, Ahmed ;
Srhiri, Halima ;
El Boukari, Brahim ;
El Ghordaf, Jalila .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)