Global existence of mild solutions for 3D stochastic Boussinesq system in Besov spaces

被引:0
作者
Sun, Jinyi [1 ]
Li, Ning [1 ,2 ]
Yang, Minghua [3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Ningxia Normal Univ, Grad Sch, Guyuan, Peoples R China
[3] Jiangxi Univ Finance & Econ, Dept Math, Nanchang, Peoples R China
基金
中国国家自然科学基金;
关键词
global solutions; stochastic Boussinesq system; NAVIER-STOKES EQUATIONS; 3-DIMENSIONAL PRIMITIVE EQUATIONS; WELL-POSEDNESS; REGULARITY; THEOREM;
D O I
10.1002/mana.202300526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the three-dimensional stochastic Boussinesq system driven by an additive white noise, describing the motion of viscous incompressible fluids with density stratification phenomenon in the rotational framework. By striking new balances between the smoothing effects of the Laplacian dissipation and dispersion effects caused by the Coriolis force and density stratification, we prove existence and uniqueness of global mild solutions to the three-dimensional stochastic Boussinesq system for arbitrarily large initial data and stochastic external forces in Besov spaces, provided that the stratification parameter is large enough. Our results can be regarded as a generalization of [Math. Nachr. 290(2017), 613-631] and [Indiana Univ. Math. J. 66(2017), 2037-2070].
引用
收藏
页码:1105 / 1126
页数:22
相关论文
共 50 条
  • [21] On the Global Existence of Strong Solution to the 3D Damped Boussinesq Equations with Zero Thermal Diffusion
    Wen, Zhihong
    Ye, Zhuan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (03): : 341 - 348
  • [22] Global well-posedness for the 3D rotating fractional Boussinesq equations in Fourier-Besov-Morrey spaces with variable exponent
    El Idrissi, Ahmed
    El Boukari, Brahim
    El Ghordaf, Jalila
    FILOMAT, 2024, 38 (21) : 7597 - 7608
  • [23] 3D Hall-MHD system with vorticity in Besov spaces
    Zhang, Zujin
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 91 - 98
  • [24] Global existence theorem for the 3-D generalized micropolar fluid system in critical Fourier-Besov-Morrey spaces with variable exponent
    Ouidirne, Fatima
    Allalou, Chakir
    Oukessou, Mohamed
    FILOMAT, 2024, 38 (20) : 7161 - 7171
  • [25] GLOBAL EXISTENCE FOR THE STOCHASTIC BOUSSINESQ EQUATIONS WITH TRANSPORT NOISE AND SMALL ROUGH DATA
    Lin, Quyuan
    Liu, Rongchang
    Wang, Weinan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 501 - 528
  • [26] Global existence and uniqueness for a nonlinear Boussinesq system in dimension two
    Sulaiman, Samira
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [27] Global existence of weak solutions for 3D incompressible inhomogeneous asymmetric fluids
    Qian, Chenyin
    Chen, Hui
    Zhang, Ting
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1555 - 1593
  • [28] LONG-TIME SOLVABILITY IN BESOV SPACES FOR THE INVISCID 3D-BOUSSINESQ-CORIOLIS EQUATIONS
    Angulo-Castillo, Vladimir
    Ferreira, Lucas C. F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (12): : 4553 - 4573
  • [29] Global existence of the 3D rotating second grade fluid system
    Jaffal-Mourtada, Basma
    ASYMPTOTIC ANALYSIS, 2021, 124 (3-4) : 259 - 290
  • [30] An Improved Regularity Criterion for the 3D Magnetic Benard System in Besov Spaces
    Naqeeb, Muhammad
    Hussain, Amjad
    Alghamdi, Ahmad M.
    SYMMETRY-BASEL, 2022, 14 (09):