Global existence of mild solutions for 3D stochastic Boussinesq system in Besov spaces

被引:0
作者
Sun, Jinyi [1 ]
Li, Ning [1 ,2 ]
Yang, Minghua [3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Ningxia Normal Univ, Grad Sch, Guyuan, Peoples R China
[3] Jiangxi Univ Finance & Econ, Dept Math, Nanchang, Peoples R China
基金
中国国家自然科学基金;
关键词
global solutions; stochastic Boussinesq system; NAVIER-STOKES EQUATIONS; 3-DIMENSIONAL PRIMITIVE EQUATIONS; WELL-POSEDNESS; REGULARITY; THEOREM;
D O I
10.1002/mana.202300526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the three-dimensional stochastic Boussinesq system driven by an additive white noise, describing the motion of viscous incompressible fluids with density stratification phenomenon in the rotational framework. By striking new balances between the smoothing effects of the Laplacian dissipation and dispersion effects caused by the Coriolis force and density stratification, we prove existence and uniqueness of global mild solutions to the three-dimensional stochastic Boussinesq system for arbitrarily large initial data and stochastic external forces in Besov spaces, provided that the stratification parameter is large enough. Our results can be regarded as a generalization of [Math. Nachr. 290(2017), 613-631] and [Indiana Univ. Math. J. 66(2017), 2037-2070].
引用
收藏
页码:1105 / 1126
页数:22
相关论文
共 50 条
[21]   On the Global Existence of Strong Solution to the 3D Damped Boussinesq Equations with Zero Thermal Diffusion [J].
Wen, Zhihong ;
Ye, Zhuan .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (03) :341-348
[22]   Global Existence and Large Time Behavior of Solutions to 3D MHD System Near Equilibrium [J].
Xiao, Yamin ;
Yuan, Baoquan .
RESULTS IN MATHEMATICS, 2021, 76 (02)
[23]   Global well-posedness for the 3D rotating fractional Boussinesq equations in Fourier-Besov-Morrey spaces with variable exponent [J].
El Idrissi, Ahmed ;
El Boukari, Brahim ;
El Ghordaf, Jalila .
FILOMAT, 2024, 38 (21) :7597-7608
[24]   3D Hall-MHD system with vorticity in Besov spaces [J].
Zhang, Zujin .
ANNALES POLONICI MATHEMATICI, 2018, 121 (01) :91-98
[25]   Global existence theorem for the 3-D generalized micropolar fluid system in critical Fourier-Besov-Morrey spaces with variable exponent [J].
Ouidirne, Fatima ;
Allalou, Chakir ;
Oukessou, Mohamed .
FILOMAT, 2024, 38 (20) :7161-7171
[26]   GLOBAL EXISTENCE FOR THE STOCHASTIC BOUSSINESQ EQUATIONS WITH TRANSPORT NOISE AND SMALL ROUGH DATA [J].
Lin, Quyuan ;
Liu, Rongchang ;
Wang, Weinan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) :501-528
[27]   Global existence and uniqueness for a nonlinear Boussinesq system in dimension two [J].
Sulaiman, Samira .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
[28]   Global existence of weak solutions for 3D incompressible inhomogeneous asymmetric fluids [J].
Qian, Chenyin ;
Chen, Hui ;
Zhang, Ting .
MATHEMATISCHE ANNALEN, 2023, 386 (3-4) :1555-1593
[29]   EXISTENCE AND UNIQUENESS OF GLOBAL STRONG SOLUTIONS FOR 3D FRACTIONAL COMPRESSIBLE SYSTEMS [J].
Liu, Mengqian ;
Niu, Lei ;
Wu, Zhigang .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 (35) :1-33
[30]   Global Existence and Uniqueness of Pathwise Solution to the Stochastic 2D Inviscid Boussinesq Equations [J].
Zhang, Shijia ;
Zhou, Guoli .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2025,