Unraveling Influential Factors of Stainless-Steel Dissolution in High-Energy Lithium Ion Batteries with LiFSI-Based Electrolytes

被引:0
作者
Stan, Marian Cristian [1 ]
Yan, Peng [1 ]
Overhoff, Gerrit Michael [1 ]
Fehlings, Nick [2 ]
Kim, Hyung-Tae [3 ]
Hinz, Robert Tobias [1 ]
Ingber, Tjark Thorben Klaus [2 ]
Guerdelli, Rayan [1 ]
Woelke, Christian [1 ]
Winter, Martin [1 ,2 ]
Brunklaus, Gunther [1 ]
Cekic-Laskovic, Isidora [1 ]
机构
[1] Forschungszentrum Julich, Inst Energy Mat & Devices, Helmholtz Inst Munster Ion Energy Storage IMD HI M, D-48149 Munster, Germany
[2] Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[3] LG Energy Solut, R&D, campus Daejeon,188 Munji-ro,Yuseong-gu, Daejeon 34122, South Korea
来源
CHEMELECTROCHEM | 2025年 / 12卷 / 06期
关键词
blended salt; LiFSI; stainless-steel dissolution; passivation; cycle performance; ALUMINUM CURRENT COLLECTOR; NONAQUEOUS CARBONATE SOLUTIONS; PASSIVATION BEHAVIOR; CORROSION; FILMS;
D O I
10.1002/celc.202400632
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Leveraging physicochemical advantages over lithium hexafluorophosphate (LiPF6), lithium bis(fluorosulfonyl)imide (LiFSI) is being investigated as a conducting salt for lithium manganese-rich cathodes (LMR) and micro-crystalline silicon anodes (mu-Si). Nevertheless, its behavior towards the aluminum (Al) current collector and stainless-steel (SUS) coin cell parts limits its application under operating conditions requiring potentials higher than 3.9 V vs. Li|Li+. Using a mixture of organic carbonate-based solvents, various functional additives, and LiPF6 lithium salt concentrations up to 1.0 M, the instability issue of the Al current collector in the presence of LiFSI is avoided. However, stainless-steel dissolution remains, being confirmed by both potentiodynamic measurements and SEM morphology investigations of the coin cell components after linear sweep voltammetry measurements carried out to 5.0 V. The results also indicate that the amount of stainless-steel dissolution is influenced by both the LiFSI amount in the electrolyte and the quality (grade) of stainless-steel used. Using Al-coated SUS 316L coin cell parts and/or high concentration electrolytes (HCE) with LiFSI (approximate to 4 M LiFSI), the observed stainless-steel dissolution process can be fully avoided, allowing the evaluation of the electrochemical performance of LMR cathodes with mu-Si anodes in LiFSI-based electrolytes.
引用
收藏
页数:11
相关论文
共 55 条
  • [1] Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction
    Bai, Panxing
    Ji, Xiao
    Zhang, Jiaxun
    Zhang, Weiran
    Hou, Singyuk
    Su, Hai
    Li, Mengjie
    Deng, Tao
    Cao, Longsheng
    Liu, Sufu
    He, Xinzi
    Xu, Yunhua
    Wang, Chunsheng
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (26)
  • [2] Quantifying the influence of temperature on Al current collector dissolution in LiTFSI-based lithium-ion battery electrolytes via coupled on-line mass analysis
    Behling, Christopher
    Luechtefeld, Janik
    Wachs, Susanne J.
    Mayrhofer, Karl J. J.
    Berkes, Balazs B.
    [J]. ELECTROCHIMICA ACTA, 2024, 473
  • [3] Corrosion of lithium metal anodes during calendar ageing and its microscopic origins
    Boyle, David T.
    Huang, William
    Wang, Hansen
    Li, Yuzhang
    Chen, Hao
    Yu, Zhiao
    Zhang, Wenbo
    Bao, Zhenan
    Cui, Yi
    [J]. NATURE ENERGY, 2021, 6 (05) : 487 - 494
  • [4] Effects of cell positive cans and separators on the performance of high-voltage Li-ion batteries
    Chen, Xilin
    Xu, Wu
    Xiao, Jie
    Engelhard, Mark H.
    Ding, Fei
    Mei, Donghai
    Hu, Dehong
    Zhang, Jian
    Zhang, Ji-Guang
    [J]. JOURNAL OF POWER SOURCES, 2012, 213 : 160 - 168
  • [5] Identifying critical drivers of innovation in pharmaceutical industry using TOPSIS method
    Damle, Madhavi
    Krishnamoorthy, Bala
    [J]. METHODSX, 2022, 9
  • [6] Galvanic Couples in Ionic Liquid-Based Electrolyte Systems for Lithium Metal Batteries-An Overlooked Cause of Galvanic Corrosion?
    Dohmann, Jan Frederik
    Horsthemke, Fabian
    Kuepers, Verena
    Bloch, Sophia
    Preibisch, Yves
    Kolesnikov, Aleksei
    Kolek, Martin
    Stan, Marian Cristian
    Winter, Martin
    Bieker, Peter
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (24)
  • [7] Mesoporous Cr2O3 as negative electrode in lithium batteries:: TEM study of the texture effect on the polymeric layer formation
    Dupont, L.
    Laruelle, S.
    Grugeon, S.
    Dickinson, C.
    Zhou, W.
    Tarascon, J. -M.
    [J]. JOURNAL OF POWER SOURCES, 2008, 175 (01) : 502 - 509
  • [8] What Can Text Mining Tell Us About Lithium-Ion Battery Researchers' Habits?
    El-Bousiydy, Hassna
    Lombardo, Teo
    Primo, Emiliano N.
    Duquesnoy, Marc
    Morcrette, Mathieu
    Johansson, Patrik
    Simon, Patrice
    Grimaud, Alexis
    Franco, Alejandro A.
    [J]. BATTERIES & SUPERCAPS, 2021, 4 (05) : 758 - 766
  • [9] Corrosion of stainless steel battery components by bis(fluorosulfonyl)imide based ionic liquid electrolytes
    Evans, Tyler
    Olson, Jarred
    Bhat, Vinay
    Lee, Se-Hee
    [J]. JOURNAL OF POWER SOURCES, 2014, 269 : 616 - 620
  • [10] Fundamentals of inorganic solid-state electrolytes for batteries
    Famprikis, Theodosios
    Canepa, Pieremanuele
    Dawson, James A.
    Islam, M. Saiful
    Masquelier, Christian
    [J]. NATURE MATERIALS, 2019, 18 (12) : 1278 - 1291