Performance of Low-Pressure-Plasma-Processed RuCo Electrocatalysts for Hydrogen Evolution Reaction

被引:0
|
作者
Tseng, Chia-Yun [1 ,2 ]
Su, Yu-Lun [1 ,2 ]
Ni, I-Chih [3 ,4 ]
Wu, Chih-, I [3 ,4 ,5 ]
Cheng, I-Chun [3 ,4 ,6 ]
Chen, Jian-Zhang [1 ,2 ,5 ,6 ]
机构
[1] Natl Taiwan Univ, Grad Inst Appl Mech, Taipei City 10617, Taiwan
[2] Natl Taiwan Univ, Adv Res Ctr Green Mat Sci & Technol, Taipei City 10617, Taiwan
[3] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Taipei City 10617, Taiwan
[4] Natl Taiwan Univ, Dept Elect Engn, Taipei City 10617, Taiwan
[5] Natl Taiwan Univ, Grad Sch Adv Technol, Taipei City 10617, Taiwan
[6] Natl Taiwan Univ, Innovat Photon Adv Res Ctr i PARC, Taipei City 10617, Taiwan
来源
ECS ADVANCES | 2023年 / 2卷 / 04期
关键词
EFFICIENT ELECTROCATALYST; AIR BATTERIES; NICKEL FOAM; THIN-FILM; ALLOY; ARRAYS;
D O I
10.1149/2754-2734/ad10fa
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
RuCo/acid-treated nickel foam (ANF) has been reported to be an excellent electrocatalyst for the hydrogen evolution reaction (HER). In this study, we perform plasma treatment with Ar, Ar/H2 (95:5), and Ar/O2 (95:5) as working gases for surface modification to explore the effect on HER performance. The developed electrocatalysts are tested in an alkaline solution (1 M KOH); the results show that Ar/H2 (95:5) plasma treatment significantly improves the electrocatalytic activity of RuCo/ANF, achieving an overpotential of 98 mV at a current density of 10 mA cm-2. Electrochemical impedance spectroscopy and cyclic voltammetry analyses shSow a large reduction in the charge transfer impedance and a significant increase in the electric double-layer capacitance. This study provides a facile strategy to activate RuCo to improve HER performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Design of pH-universal electrocatalysts for hydrogen evolution reaction
    Lin, Jingwen
    Wang, Xu
    Zhao, Zhenyun
    Chen, Dongliang
    Liu, Rumin
    Ye, Zhizhen
    Lu, Bin
    Hou, Yang
    Lu, Jianguo
    CARBON ENERGY, 2024, 6 (11)
  • [42] Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions
    Jumeng Wei
    Min Zhou
    Anchun Long
    Yanming Xue
    Hanbin Liao
    Chao Wei
    Zhichuan J. Xu
    Nano-Micro Letters, 2018, 10
  • [43] Polyaniline-based electrocatalysts for electrochemical hydrogen evolution reaction
    Ramohlola, Kabelo E.
    Modibane, Kwena D.
    Ndipingwi, Miranda M.
    Iwuoha, Emmanuel I.
    EUROPEAN POLYMER JOURNAL, 2024, 213
  • [44] An overview on Pd-based electrocatalysts for the hydrogen evolution reaction
    Sarkar, Shreya
    Peter, Sebastian C.
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (09): : 2060 - 2080
  • [45] Nanostructured Pd/Ag/Ni electrocatalysts for the Hydrogen Evolution Reaction
    Medina-Orta, R.
    Ortega, E. M.
    Perez-Herranz, V.
    Sanchez-Loredo, M. G.
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [46] A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts
    Ghosh, Pokhraj
    Ding, Shengda
    Chupik, Rachel B.
    Quiroz, Manuel
    Hsieh, Chung-Hung
    Bhuvanesh, Nattami
    Hall, Michael B.
    Darensbourg, Marcetta Y.
    CHEMICAL SCIENCE, 2017, 8 (12) : 8291 - 8300
  • [47] Unraveling the mechanism of hydrogen evolution reaction on cobalt compound electrocatalysts
    Yang, Tao
    Xie, Haonan
    Ma, Ning
    Liu, Enzuo
    Shi, Chunsheng
    He, Chunnian
    Zhao, Naiqin
    APPLIED SURFACE SCIENCE, 2021, 550
  • [48] Silicon Nanowires with MoSx and Pt as Electrocatalysts for Hydrogen Evolution Reaction
    Hsieh, S. H.
    Ho, S. T.
    Chen, W. J.
    JOURNAL OF NANOMATERIALS, 2016, 2016
  • [49] MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics
    Yang, Xiaowei
    Ga, Nan
    Zhou, Si
    Zhao, Jijun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (29) : 19390 - 19397
  • [50] Recent advances in electrocatalysts for seawater splitting in hydrogen evolution reaction
    Li, Jiao
    Sun, Jianpeng
    Li, Zizhen
    Meng, Xiangchao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (69) : 29685 - 29697