Effects of Sc Composition and Lattice Constraint on Polarization Switching of ScxAl1-xN Alloys: A First-Principles Study

被引:0
作者
Akiyama, Toru [1 ,2 ]
Miyamoto, Takuto [1 ]
Kawamura, Takahiro [1 ,2 ]
机构
[1] Mie Univ, Grad Sch Engn, Tsu 5148507, Japan
[2] Mie Univ, Innovat Ctr Semicond & Digital Future, Tsu 5148507, Japan
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2025年
关键词
energy barriers; first-principles calculations; lattice constraint; polarizations; ScxAl1-xN; ELASTIC BAND METHOD; PIEZOELECTRIC RESPONSE; PSEUDOPOTENTIALS; INVERSION; ENERGY; HEMTS; SCALN;
D O I
10.1002/pssb.202400647
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Herein, investigations for clarifying the effects of Sc composition and lattice constraint on polarization switching of ScxAl1-xN alloys by means of first-principles calculations are presented. The calculations for polarization-switching energy barriers, using the nudged-elastic band technique in Sc0.125Al0.875N, Sc0.25Al0.75N, and Sc0.375Al0.625N alloys in wurtzite structure, demonstrate that homogeneous switching with low energy barrier is possible for ScxAl1-xN alloys with high Sc concentrations. Furthermore, the calculations assuming homogeneous switching suggest that the energy barrier deceases with Sc composition and is reduced by the lattice constraint of substrate which induces tensile strain in ScxAl1-xN alloys. The difference in energy barriers depending on Sc composition and lattice strain originates from the formation fivefold-coordinated Sc atoms as well as the contribution of lattice strain in the initial/final state as well as the transition state during polarization switching. The calculated results offer some insights for understanding the polarization switching in ScxAl1-xN alloys which can be controlled by Sc composition and lattice constraint of growth substrate.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] Akiyama M., Kamohara T., Kano K., Teshigahara A., Takeuchi Y., Kawahara N., Adv. Mater., 21, (2009)
  • [2] Caro M.A., Zhang S., Riekkinen T., Ylilammi M., Moram M.A., Lopez-Acevedo O., Molarius J., Laurila T., J. Phys.: Condens. Matter, 27, (2015)
  • [3] Fichter S., Wolff N., Lofink F., Kienle L., Wagner B., J. Appl. Phys., 125, (2019)
  • [4] Wang P., Wang D., Wang B., Mohanty S., Diez S., Wu Y., Sun Y., Ahmadi E., Mi Z., Appl. Phys. Lett., 119, (2021)
  • [5] Casamento J., Lee H., Maeda T., Gund V., Nomoto K., van Deurzen L., Turner W., Fay P., Mu S., Van de Walle C.G., Lal A., Xing H.G., Jena D., Appl. Phys. Lett., 120, (2022)
  • [6] Green A.J., Gillespie J.K., Fitch R.C., Walker D.E., Lindquist M., Crespo A., Brooks D., Beam E., Xie A., Kumar V., Jimenez J., Lee C., Cao Y., Chabak K.D., Jessen G.H., IEEE Electron Device Lett., 40, (2019)
  • [7] Green A.J., Moser N., Miller N.C., Liddy K.J., Lindquist M., Elliot M., Gillespie J.K., Fitch R.C., Gilbert R., Walker D.E., Werner E., Crespo A., Beam E., Xie A., Lee C., Cao Y., Chabak K.D., IEEE Electron Device Lett., 41, (2020)
  • [8] Yasuoka S., Shimizu T., Tateyama A., Uehara M., Yamada H., Akiyama M., Hiranaga Y., Cho Y., Funakubo H., J. Appl. Phys., 128, (2020)
  • [9] Wang P., Wang D., Vu N.M., Chiang T., Heron J.T., Mi Z., Appl. Phys. Lett., 118, (2021)
  • [10] Dzuba B., Nguyen T., Sen A., Diaz R.E., Dubey M., Bachhav M., Wharry J.P., Manfra M.J., Malis O., J. Appl. Phys., 132, (2022)