Pb-Free Infrared Harvesting Colloidal Quantum Dot Solar Cells Using n-p Homojunction Architecture

被引:1
作者
Park, Youngsang [1 ]
Kim, Jugyoung [1 ]
Jeong, Minwoo [2 ]
Shin, Daekwon [1 ]
Jung, Jaegwan [3 ]
Kim, Hyoin [1 ]
Jeong, Hyeonjun [1 ]
Kim, Hyojung [4 ]
Kim, Yong-Hyun [2 ,3 ,5 ]
Jeong, Sohee [1 ,6 ,7 ]
机构
[1] Sungkyunkwan Univ SKKU, Ctr Artificial Atoms, Dept Energy Sci DOES, 2066 Seobu Ro, Suwon 16419, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Grad Sch Semicond Technol, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol KAIST, Dept Phys, Daejeon 34141, South Korea
[4] Kunsan Natl Univ, Inst Basic Sci, Gunsan 54150, South Korea
[5] Suranaree Univ Technol, Inst Sci, Sch Phys, Nakhon Ratchasima 30000, Thailand
[6] Sungkyunkwan Univ SKKU, Dept Future Energy Engn DFEE, Suwon 16419, South Korea
[7] Sungkyunkwan Inst Energy Sci & Technol SIEST, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
homojunction; InAs CQD; IR harvesting; Pb-free; solar cell; CIRCUIT VOLTAGE DEFICIT; NANOCRYSTALS; EFFICIENCY; TRANSPORT; SOLIDS; LIGAND; STATES;
D O I
10.1002/aenm.202404141
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Harvesting infrared (IR) sunlight using colloidal quantum dots (CQDs) holds significant promise for optoelectronic devices including photovoltaics (PVs) and self-powered sensors. Traditionally, Pb chalcogenides have been utilized in energy devices, but needs for RoHS compliance derive the development of Pb-free alternatives. A key challenge with Pb-free materials is the low photovoltage in devices, primarily due to recombination in surface defects and interfaces within the architectures. Here, the Pb-free CQD PVs capable of harvesting the IR light beyond the Si PVs are first presented. Designing an InAs CQD-based homojunction architecture, with n-type InAs absorbers passivated with multifunctional ligands and p-type conductive InAs inks, efficient charge extraction is achieved while suppressing interface recombination. Additionally, the IR light path is modulated to match the absorber's absorption to optimize the performance. This led to InAs PVs with absorber bandgaps ranging from 1.35 to 1.03 eV, significantly improving the open-circuit voltage from 0.05 to 0.26 V and fill factor from 29% to 50%, comparable to Pb-based PVs. The InAs IR-PVs exhibit a power conversion efficiency of 2.00% under one-sun and 0.27% with a Si filter, outperforming control ones (0.28% and 0.03%). This work provides an effective strategy for designing Pb-free, energy-independent IR optoelectronics.
引用
收藏
页数:11
相关论文
共 63 条
[21]   A molecular weight-regulated sequential deposition strategy enabling semitransparent organic solar cells with the light utilization efficiency of over 5% [J].
Huang, Xuexiang ;
Cheng, Yujun ;
Fang, Yuan ;
Zhang, Lifu ;
Hu, Xiaotian ;
Jeong, Sang Young ;
Zhang, Hean ;
Woo, Han Young ;
Wu, Feiyan ;
Chen, Lie .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (11) :4776-4788
[22]   Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression [J].
Ip, Alexander H. ;
Kiani, Amirreza ;
Kramer, Iilan J. ;
Voznyy, Oleksandr ;
Movahed, Hamidreza F. ;
Levina, Larissa ;
Adachi, Michael M. ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
ACS NANO, 2015, 9 (09) :8833-8842
[23]  
Ip AH, 2012, NAT NANOTECHNOL, V7, P577, DOI [10.1038/nnano.2012.127, 10.1038/NNANO.2012.127]
[24]   P-Type Colloidal InSb Quantum Dot Ink Enables III-V Group Bulk-Heterojunction Shortwave Infrared (SWIR) Photodetector [J].
Jee, Seungin ;
Si, Min-Jae ;
Choi, Jae-Hwan ;
Kim, Dongeon ;
Kim, Changjo ;
Yang, Dongsoo ;
Baek, Se-Woong .
ADVANCED OPTICAL MATERIALS, 2024, 12 (18)
[25]   Suppressing the Dark Current in Quantum Dot Infrared Photodetectors by Controlling Carrier Statistics [J].
Jung, Byung Ku ;
Woo, Ho Kun ;
Shin, Chanho ;
Park, Taesung ;
Li, Ning ;
Lee, Kyu Joon ;
Kim, Woosik ;
Bae, Jung Ho ;
Ahn, Jae-Pyoung ;
Ng, Tse Nga ;
Oh, Soong Ju .
ADVANCED OPTICAL MATERIALS, 2022, 10 (02)
[26]   Semiconductor Nanocrystals: Unveiling the Chemistry behind Different Facets [J].
Kim, Meeree ;
Choi, Mahnmin ;
Choi, Sinil ;
Jeong, Sohee .
ACCOUNTS OF CHEMICAL RESEARCH, 2023, 56 (13) :1756-1765
[27]   Development of Group III-V Colloidal Quantum Dots for Optoelectronic Applications [J].
Kim, Taewan ;
Shin, Daekwon ;
Kim, Meeree ;
Kim, Hyoin ;
Cho, Eunhye ;
Choi, Mahnmin ;
Kim, Jugyeong ;
Jang, Eunji ;
Jeong, Sohee .
ACS ENERGY LETTERS, 2022, 8 (01) :447-456
[28]   Diffusion dynamics controlled colloidal synthesis of highly monodisperse InAs nanocrystals [J].
Kim, Taewan ;
Park, Seongmin ;
Jeong, Sohee .
NATURE COMMUNICATIONS, 2021, 12 (01)
[29]   Efficiency Limit of Colloidal Quantum Dot Solar Cells: Effect of Optical Interference on Active Layer Absorption [J].
Kim, Taewan ;
Jin, Xing ;
Song, Jung Hoon ;
Jeong, Sohee ;
Park, Taiho .
ACS ENERGY LETTERS, 2020, 5 (01) :248-251
[30]   III-V colloidal nanocrystals: control of covalent surfaces [J].
Kim, Youngsik ;
Chang, Jun Hyuk ;
Choi, Hyekyoung ;
Kim, Yong-Hyun ;
Bae, Wan Ki ;
Jeong, Sohee .
CHEMICAL SCIENCE, 2020, 11 (04) :913-922