A transfer learning-based GAN for data augmentation in automatic modulation recognition

被引:0
作者
Gao, Hai [1 ,2 ,3 ]
Ke, Jing [1 ,3 ]
Lu, Xiaochun [1 ,2 ,3 ]
Cheng, Fang [1 ,3 ]
Chen, Xiaofei [1 ,3 ]
机构
[1] Chinese Acad Sci, Natl Time Serv Ctr, Xian 710600, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Time Reference & Applicat, Xian 710600, Peoples R China
来源
ENGINEERING RESEARCH EXPRESS | 2024年 / 6卷 / 04期
关键词
generative adversarial networks; transfer learning; data augmentation; automatic modulation recognition; COGNITIVE RADIO; CLASSIFICATION; LSTM; CNN;
D O I
10.1088/2631-8695/ad988b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The automatic modulation recognition (AMR) algorithms based on deep learning (DL) have achieved high classification accuracy by automatically extracting deep features from massive data. However, in real-world scenarios, sufficient training data is always difficult to collect, which affects the performance of DL-based models. As a type of data augmentation algorithm, Generative Adversarial Networks (GANs) can generate artificial data similar to the given real data and thus solve the problem of insufficient data, whereas the training process of GANs is also affected by limited number of data samples. Inspired by the successful application of transferring GANs in the field of image generation, this paper employs transfer learning-based GANs to enlarge the training data by generating the constellation diagram images of radio signals, which can effectively solve the problems of divergence and model collapse. We feed the enhanced dataset into a CNN model for modulation recognition and the experimental results demonstrate that our proposed method achieves a performance improvement ranging from 1% to 5.1% compared with the result of the original limited training data.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Semi-supervised transfer learning-based automatic weld defect detection and visual inspection
    Kumar, Dheeraj Dhruva
    Fang, Cheng
    Zheng, Yue
    Gao, Yuqing
    ENGINEERING STRUCTURES, 2023, 292
  • [32] Inception networks, data augmentation and transfer learning in EEG-based photosensitivity diagnosis
    Martins, Fernando Moncada
    Gonzalez, Victor M.
    Villar, Jose R.
    Lopez, Beatriz Garcia
    Gomez-Menendez, Ana Isabel
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):
  • [33] Automatic Modulation Recognition with Deep Learning Algorithms
    Camlibel, Aysenur
    Karakaya, Bahattin
    Tanc, Yesim Hekim
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [34] Transfer-GAN: data augmentation using a fine-tuned GAN for sperm morphology classification
    Abbasi, Amir
    Bahrami, Sepideh
    Hemmati, Tahere
    Mirroshandel, Seyed Abolghasem
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (06) : 2440 - 2456
  • [35] Data augmentation method for underwater acoustic target recognition based on underwater acoustic channel modeling and transfer learning
    Li, Daihui
    Liu, Feng
    Shen, Tongsheng
    Chen, Liang
    Zhao, Dexin
    APPLIED ACOUSTICS, 2023, 208
  • [36] ABConv: Attention Based Convolution for Automatic Modulation Recognition
    Guo, Chengyu
    Han, Shuai
    Meng, Weixiao
    Li, Cheng
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 1586 - 1591
  • [37] Data Augmentation of Backscatter X-ray Images for Deep Learning-Based Automatic Cargo Inspection
    Cho, Hyunwoo
    Park, Haesol
    Kim, Ig-Jae
    Cho, Junghyun
    SENSORS, 2021, 21 (21)
  • [38] Olympic Games Event Recognition via Transfer Learning with Photobombing Guided Data Augmentation
    Mohamad, Yousef, I
    Baraheem, Samah S.
    Nguyen, Tam, V
    JOURNAL OF IMAGING, 2021, 7 (02)
  • [39] Geological object recognition in legacy maps through data augmentation and transfer learning techniques
    Li, Wenjia
    Chen, Weilin
    Zhang, Jiyin
    Li, Chenhao
    Ma, Xiaogang
    APPLIED COMPUTING AND GEOSCIENCES, 2025, 25
  • [40] GAN-Based Data Augmentation for Visual Finger Spelling Recognition
    Kwolek, Bogdan
    ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018), 2019, 11041