Principles, progress, and prospects of photo-rechargeable zinc-ion batteries

被引:0
作者
Jin, Kejun [1 ]
Yu, Yingjian [1 ]
机构
[1] Kunming Univ, Coll Phys Sci & Technol, Kunming 650214, Yunnan, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2025年 / 104卷
基金
中国国家自然科学基金;
关键词
Photo-rechargeable; Zinc-ion batteries; Cathodes; Band structure; Solar cells; FARADAIC JUNCTION; MICRO-BATTERIES; SOLAR-CELLS; CRYSTALS; SYSTEM;
D O I
10.1016/j.jechem.2024.12.058
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Solar energy has emerged as one of the most crucial yet underutilized renewable energy sources resources owing to the intermittent nature of sunlight. Therefore, integrating solar cells with rechargeable batteries is essential for achieving a continual and renewable energy future. Zinc-ion batteries (ZIBs) are considered the most prospective next-generation energy storage devices owing to their ideal theoretical energy density, affordability, security and portability. However, the commercial application of ZIBs is hindered by the limited electrochemical performance of their cathodes. The use of efficient and cost-effective solar energy to accelerate the slow cathodic reaction kinetics has emerged as a promising tactic to address this challenge. This review explores the working mechanism of photo-rechargeable ZIBs (PRZIBs) and summarizes recent research progress based on four key design principles. These principles include modulating energy band structure, enhancing photogenerated carriers (PGC) separation, minimizing carrier recombination, and utilizing the photothermal effect. Finally, the review outlines prospects and provides constructive guidance for developing PRZIBs. (c) 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:382 / 396
页数:15
相关论文
共 127 条
  • [1] Zhang Y., Han Y., Deng F., Zhao T., Liu Z., Wang D., Luo J., Yu Y., Carbon Energy, 6, (2024)
  • [2] Brinkmann K., Wang P., Lang F., Li W., Guo X., Zimmermann F., Olthof S., Neher D., Hou Y., Stolterfoht M., Wang T., Djurisic A., Riedl T., Nat. Rev. Mater., 9, pp. 202-217, (2024)
  • [3] Li Y., Ma Z., Hou S., Liu Q., Yan G., Li X., Yu T., Du Z., Yang J., Chen Y., You W., Yang Q., Xiang Y., Tang S., Yue X., Zhang M., Zhang W., Yu J., Huang Y., Xie J., Tang C., Mai Y., Sun K., J. Mater. Sci. Technol., 176, pp. 236-257, (2024)
  • [4] Wang T., Du H., Xing M., Cao F., Liao M., Liu W., Wang W., Han C., Yang Z., Zeng Y., Ye J., Sol. RRL, 8, (2024)
  • [5] Han Y., Yu Y., Chin. Chem. Lett., (2024)
  • [6] Wei X., Yi Y., Yuan X., Liu Y., Wan Q., Gou G., Zhang Y., Zhou G., Song Y.Z., Energy Eniviron. Sci., 17, 17, pp. 2968-3003, (2024)
  • [7] Yang Q., Shen S., Han Z., Li G., Liu D., Zhang Q., Song L., Wang D., Zhou G., Song Y., Adv. Mater., 36, (2024)
  • [8] Song Y., Song L., Wang M., Cai W., Sci. Bull., 69, pp. 2013-2016, (2024)
  • [9] Yang Q., Wang C.S., Song L.X., Zhang Y.F., Shen Z.Y., Cai W.L., Song Y.Z., Angew. Chem. Int. Ed., (2024)
  • [10] Han Y., Zhao Y., Yu Y., Energy Storage Mater., 69, (2024)