ON CONVERGENCE RATE IN THE WEAK LAW OF LARGE NUMBERS FOR FGM RANDOM SEQUENCES

被引:0
作者
Amini, Mohammad [1 ]
Hadianfar, Omolbanin [2 ]
Naderi, Habib [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Stat, Ordered & Spatial Data Ctr Excellence, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Dept Stat, Fac Math Sci, Mashhad, Iran
[3] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran
关键词
Convergence rate; weak law of large numbers; FGM random sequences; Kolmogorov-Feller weak law of large numbers; KOLMOGOROV; EXTENSION;
D O I
10.4134/BKMS.b230709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the weak law of large numbers for FGM random sequences by extending the classic Kolmogorov-Feller weak law of large numbers. In addition, we make a simulation study for the asymptotic behavior in the sense of convergence in probability for FGM random sequences.
引用
收藏
页码:1617 / 1629
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1993, IMS Lecture Notes Monograph Series, V22
[2]  
Armstrong A., Cerna Working Paper
[3]  
Bingham N.H., 1989, REGULAR VARIATION, V27
[4]   On Convergence Rates in the Marcinkiewicz-Zygmund Strong Law of Large Numbers [J].
Boukhari, Fakhreddine .
RESULTS IN MATHEMATICS, 2021, 76 (04)
[5]   Weak laws of large numbers for maximal weighted sums of random variables [J].
Boukhari, Fakhreddine .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (01) :105-115
[6]   On an Extension of the Weak Law of Large Numbers of Kolmogorov and Feller [J].
Chandra, Tapas Kumar .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (03) :421-426
[7]  
EBRAHIMI N, 1981, COMMUN STAT A-THEOR, V10, P307
[8]   A note on the weighted strong law of large numbers under general conditions [J].
Fazekas, Istvan ;
Matula, Przemyslaw ;
Ziemba, Maciej .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (3-4) :373-386
[9]  
Gut A, 2013, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-1-4614-4708-5
[10]   An extension of the Kolmogorov-Feller weak law of large numbers with an application to the St. Petersburg game [J].
Gut, A .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (03) :769-779