We establish stability and pathwise uniqueness of solutions to Wiener noise driven McKean-Vlasov equations with random non-Lipschitz continuous coefficients. In the deterministic case, we also obtain the existence of unique strong solutions. By using our approach, which is based on an extension of the Yamada-Watanabe ansatz to the multidimensional setting and which does not rely on the construction of Lyapunov functions, we prove first moment and pathwise exponential stability. Furthermore, Lyapunov exponents are computed explicitly.
机构:
Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,92208, F-44322 Nantes 3, FranceUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,92208, F-44322 Nantes 3, France
de Raynal, P. -E. Chaudru
Jabir, J. -f.
论文数: 0引用数: 0
h-index: 0
机构:
HSE Univ, Lab Stochast Anal & Its Applicat, Pokrovsky Blvd 11, Moscow, RussiaUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,92208, F-44322 Nantes 3, France
Jabir, J. -f.
Menozzi, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Univ Evry Val Essonne, LaMME, CNRS,UMR 8071, 23 Blvd France, F-91037 Evry, FranceUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,92208, F-44322 Nantes 3, France
Menozzi, S.
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS,
2025,
13
(01):
: 367
-
420