Application of Machine Learning in the Development of Fourth Degree Quantitative Structure-Activity Relationship Model for Triclosan Analogs Tested against Plasmodium falciparum 3D7

被引:0
作者
Guimaraes, Railton Marques de Souza [1 ,2 ]
Vieira, Ivo Henrique Provensi [1 ,3 ]
Zanchi, Fabricio Berton [4 ]
Caceres, Rafael Andrade [5 ]
Zanchi, Fernando Berton [1 ,3 ,6 ,7 ]
机构
[1] Fundacao Oswaldo Cruz Rondoonia, Lab Bioinformat & Quim Med, BR-76812245 Porto Velho, Rondonia, Brazil
[2] Ctr Univ Afya, Fac Biomed, BR-76805846 Porto Velho, Rondonia, Brazil
[3] Inst Nacl Epidemiol Amazoonia Ocidental EPIAMO, BR-76812245 Porto Velho, Rondonia, Brazil
[4] Univ Fed Sul Bahia UFSB, Ctr Formacao Ciencias Ambientais CFCAm, BR-45810000 Porto Seguro, BA, Brazil
[5] Univ Fed Ciencias Saude Porto Alegre UFCSPA, Lab Bioinformat Estrutural Modelagem Mol & Simulac, Programa Posgrad Biociencias, BR-90050170 Porto Alegre, RS, Brazil
[6] Univ Fed Rondonia UNIR, Programa Posgrad Biol Expt PGBIOEXP, FIOCRUZ Rondonia, BR-76812245 Porto Velho, Rondonia, Brazil
[7] FIOCRUZ Rondonia, Programa Posgrad Rede BIONORTE, BR-76812245 Porto Velho, Rondonia, Brazil
来源
ACS OMEGA | 2024年 / 9卷 / 44期
关键词
CARRIER PROTEIN REDUCTASE; DIARYL ETHER INHIBITORS; BIOLOGICAL-ACTIVITY; PATHWAY;
D O I
10.1021/acsomega.4c05768
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite new therapies against malaria, this disease remains one of the main causes of death affecting humanity. The phenomenon of resistance has caused concern as the drugs no longer have the same efficacy, forcing scientific research to develop new methods that prospect new molecules. With the advancement of artificial intelligence, it becomes possible to apply machine learning (ML) techniques in the discovery and evaluation of new molecules, by employing the quantitative structure-activity relationship (QSAR), a classic method that uses regressions to create a model that allows identifying and evaluating new drug candidates. This work combined QSAR with ML and developed a supervised model that modeled a fourth degree polynomial equation capable of identifying new drug candidates derived from the triclosan compound-a classic inhibitor of Plasmodium falciparum growth, the cause of severe malaria. The model produces an R-2 greater than 80% for training and concurrent testing, as well as a correlation index greater than 80% between the calculated and experimental pEC(50) (negative logarithm of half maximal effective concentration) data. In addition, a web software (PlasmoQSAR) was created that allows researchers to calculate the EC50 (half maximal effective concentration) of new molecules using the developed analytical method.
引用
收藏
页码:44436 / 44447
页数:12
相关论文
共 45 条
  • [21] Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics
    Hong, Huixiao
    Xie, Qian
    Ge, Weigong
    Qian, Feng
    Fang, Hong
    Shi, Leming
    Su, Zhenqiang
    Perkins, Roger
    Tong, Weida
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2008, 48 (07) : 1337 - 1344
  • [22] Matplotlib: A 2D graphics environment
    Hunter, John D.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 90 - 95
  • [23] Theoretical design of novel antimalarial agents against P. falciparum strain, Dd2 through the QSAR modeling of synthesized 2′-substituted triclosan derivatives
    Ibrahim, Zakari Ya'u
    Uzairu, Adamu
    Shallangwa, Gideon
    Abechi, Stephen
    [J]. HELIYON, 2020, 6 (09)
  • [24] Deep Learning Approach for Discovery of In Silico Drugs for Combating COVID-19
    Jha, Nishant
    Prashar, Deepak
    Rashid, Mamoon
    Shafiq, Mohammad
    Khan, Razaullah
    Pruncu, Catalin, I
    Siddiqui, Shams Tabrez
    Kumar, M. Saravana
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [25] In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors
    Lindert, Steffen
    Tallorin, Lorillee
    Nguyen, Quynh G.
    Burkart, Michael D.
    McCammon, J. Andrew
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2015, 29 (01) : 79 - 87
  • [26] Machine learning in chemoinformatics and drug discovery
    Lo, Yu-Chen
    Rensi, Stefano E.
    Torng, Wen
    Altman, Russ B.
    [J]. DRUG DISCOVERY TODAY, 2018, 23 (08) : 1538 - 1546
  • [27] Enalos KNIME nodes: Exploring corrosion inhibition of steel in acidic medium
    Melagraki, Georgia
    Afantitis, Antreas
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 123 : 9 - 14
  • [28] Molecular modeling studies, synthesis, and biological evaluation of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitors
    Morde, Varun A.
    Shaikh, Mushtaque S.
    Pissurlenkar, Raghuvir R. S.
    Coutinho, Evans C.
    [J]. MOLECULAR DIVERSITY, 2009, 13 (04) : 501 - 517
  • [29] Antimalarial Drug Predictions Using Molecular Descriptors and Machine Learning against Plasmodium Falciparum
    Mswahili, Medard Edmund
    Martin, Gati Lother
    Woo, Jiyoung
    Choi, Guang J.
    Jeong, Young-Seob
    [J]. BIOMOLECULES, 2021, 11 (12)
  • [30] Deep Learning-driven research for drug discovery: Tackling Malaria
    Neves, Bruno J.
    Braga, Rodolpho C.
    Alves, Vinicius M.
    Lima, Marilia N. N.
    Cassiano, Gustavo C.
    Muratov, Eugene N.
    Costa, Fabio T. M.
    Andrade, Carolina Horta
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (02)