A Molecular Catalyst-Driven Sustainable Zinc-Air Battery Assembly

被引:0
|
作者
Saha, Sukanta [1 ]
Mitra, Sampurna [1 ]
Kharwar, Yashwant Pratap [1 ]
Annadata, Harshini V. [2 ]
Roy, Soumyabrata [3 ]
Dutta, Arnab [1 ,4 ,5 ]
机构
[1] Indian Inst Technol, Chem Dept, Mumbai 400076, Maharashtra, India
[2] Bhabha Atom Res Ctr, Beamline Dev & Applicat Sect, Mumbai 400085, India
[3] Rice Univ, Dept Mat Sci & Nano Engn, Houston, TX 77005 USA
[4] Indian Inst Technol, Interdisciplinary Program Climate Studies, Mumbai 400076, Maharashtra, India
[5] Natl Ctr Excellence Carbon Capture & Utilizat, Mumbai 400076, Maharashtra, India
关键词
bidirectional electrocatalyst; heterogenized molecular electrocatalyst; oxygen evolution reaction; oxygen reduction reaction; rechargeable Zn-Air battery; SUZUKI-MIYAURA; OXYGEN; ELECTROCATALYSTS; NANOPARTICLES; EFFICIENT;
D O I
10.1002/smll.202411021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bidirectional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts are key for molecular oxygen-centric renewable energy transduction via metal-air batteries. Here, a molecular cobalt complex is covalently tethered on a strategically functionalized silica surface that displayed both ORR and OER in alkaline media. The detailed X-ray absorbance spectroscopy (XAS) studies indicate that this catalyst retains its intrinsic molecular features while playing a central role during bidirectional electrocatalysis and demonstrating a relatively lower energy gap between O2/H2O interconversions. This robust molecular catalyst-silica composite (deposited on a porous carbon paper) is assembled along with a zinc foil and polymeric gel membrane to devise an active single-stack quasi-solid zinc-air battery (ZAB) setup. This quasi-solid ZAB assembly displayed impressive power density (60 mW cm-2@100 mA cm-2), specific capacity (818 mAh g-1@ 5mA cm-2), energy density (757 Whkg-1 @5mA cm-2), and elongated charging/discharging life (28 h). An appropriate assembly of these ZAB units is able to power practical electronic appliances, requiring approximate to 1.6-6.0V potential requirements.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Studies on the oxygen reduction catalyst for zinc-air battery electrode
    Wang, XY
    Sebastian, PJ
    Smit, MA
    Yang, HP
    Gamboa, SA
    JOURNAL OF POWER SOURCES, 2003, 124 (01) : 278 - 284
  • [2] Sustainable zinc-air battery chemistry: advances, challenges and prospects
    Wang, Qichen
    Kaushik, Shubham
    Xiao, Xin
    Xu, Qiang
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (17) : 6139 - 6190
  • [3] ZINC-AIR BATTERY SYSTEM
    CAPRIOGL.G
    EEI BULLETIN, 1970, 38 (07): : 228 - &
  • [4] MECHANISMS OF OPERATION OF ZINC-AIR BATTERY
    GIBBARD, HF
    ESPIG, HR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (08) : C333 - C333
  • [6] Development of a rechargeable zinc-air battery
    Toussaint, Gwenaelle
    Stevens, Philippe
    Akrour, Laurent
    Rouget, Robert
    Fourgeot, Fabrice
    METAL/AIR AND METAL/WATER BATTERIES, 2010, 28 (32): : 25 - 34
  • [7] ZINC-AIR BATTERY POWERED CAR
    MOOS, AM
    CHEMICAL & ENGINEERING NEWS, 1968, 46 (40) : 8 - &
  • [8] Selectively etched graphene encapsulated CoFe catalyst for zinc-air battery application
    Wu, J.
    Zou, J.
    Zhang, W.
    Li, J.
    Yang, Z.
    Qu, K.
    Li, Y.
    Cai, W.
    MATERIALS TODAY ENERGY, 2020, 17
  • [9] Atomic Symbiotic-Catalyst for Low-Temperature Zinc-Air Battery
    Meng, Ge
    Huang, Zaimei
    Tao, Lei
    Zhuang, Zechao
    Zhang, Qingcheng
    Chen, Qilin
    Yang, Hui
    Zhao, Huaping
    Ye, Chenliang
    Wang, Yu
    Zhang, Jian
    Chen, Wei
    Du, Shixuan
    Chen, Yihuang
    Wang, Dingsheng
    Jin, Huile
    Lei, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [10] Optimized zinc electrode for the rechargeable zinc-air battery
    Müller, S
    Holzer, F
    Haas, O
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (09) : 895 - 898