A neural network for long-term super-resolution imaging of live cells with reliable confidence quantification

被引:0
|
作者
Qiao, Chang [1 ,2 ,3 ,4 ]
Liu, Shuran [1 ]
Wang, Yuwang [5 ]
Xu, Wencong [1 ]
Geng, Xiaohan [6 ,7 ]
Jiang, Tao [6 ,7 ]
Zhang, Jingyu [1 ]
Meng, Quan [6 ,7 ]
Qiao, Hui [1 ,2 ,3 ,4 ]
Li, Dong [6 ,8 ]
Dai, Qionghai [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] Tsinghua Univ, Inst Brain & Cognit Sci, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing Key Lab Multidimens & Multiscale Computat, Beijing, Peoples R China
[4] Beijing Municipal Educ Commiss, Beijing Lab Brain & Cognit Intelligence, Beijing, Peoples R China
[5] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
[6] Chinese Acad Sci, Inst Biophys, CAS Ctr Excellence Biomacromolecules, Natl Lab Biomacromolecules, Beijing, Peoples R China
[7] Univ Chinese Acad Sci, Coll Life Sci, Beijing, Peoples R China
[8] Tsinghua Univ, IDG McGovern Inst Brain Res, Tsinghua Peking Ctr Life Sci, Sch Life Sci,New Cornerstone Sci Lab,Beijing Front, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 北京市自然科学基金; 中国博士后科学基金;
关键词
MICROSCOPY; FISSION;
D O I
10.1038/s41587-025-02553-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network. DPA-TISR adaptively enhances the cross-frame alignment in the phase domain and outperforms existing state-of-the-art SISR and TISR models. We also develop Bayesian DPA-TISR and design an expected calibration error minimization framework that reliably infers inference confidence. We demonstrate multicolor live-cell SR imaging for more than 10,000 time points of various biological specimens with high fidelity, temporal consistency and accurate confidence quantification.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions
    Han, Yubing
    Li, Meihua
    Qiu, Fengwu
    Zhang, Meng
    Zhang, Yu-Hui
    NATURE COMMUNICATIONS, 2017, 8
  • [22] Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule
    Saurabh, Saumya
    Perez, Adam M.
    Comerci, Cohn J.
    Shapiro, Lucy
    Moerner, W. E.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (33) : 10398 - 10401
  • [23] Tracking and interpreting long-range chromatin interactions with super-resolution live-cell imaging
    Brandao, Hugo B.
    Gabriele, Michele
    Hansen, Anders S.
    CURRENT OPINION IN CELL BIOLOGY, 2021, 70 : 18 - 26
  • [24] Live Intracellular Super-Resolution Imaging Using Site-Specific Stains
    Carlini, Lina
    Manley, Suliana
    ACS CHEMICAL BIOLOGY, 2013, 8 (12) : 2643 - 2648
  • [25] Live-cell super-resolution imaging of intrinsically fast moving flagellates
    Glogger, M.
    Stichler, S.
    Subota, I.
    Bertlein, S.
    Spindler, M-C
    Tessmar, J.
    Groll, J.
    Engstler, M.
    Fenz, S. F.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (07)
  • [26] Super-Resolution Lensless Imaging of Cells Using Brownian Motion
    Fang, Yuan
    Yu, Ningmei
    Jiang, Yuquan
    APPLIED SCIENCES-BASEL, 2019, 9 (10):
  • [27] Ground State Depletion Super-resolution Imaging in Mammalian Cells
    Dixon, Rose E.
    Vivas, Oscar
    Hannigan, Karen I.
    Dickson, Eamonn J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (129):
  • [28] Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells
    Li, Yiming
    Shang, Li
    Nienhaus, G. Ulrich
    NANOSCALE, 2016, 8 (14) : 7423 - 7429
  • [29] Improved image super-resolution algorithm based on convolutional neural network
    Xiao J.
    Liu E.
    Zhu L.
    Lei J.
    1600, Chinese Optical Society (37):
  • [30] A targetable fluorescent probe for dSTORM super-resolution imaging of live cell nucleus DNA
    Zhang, Xiaodong
    Ye, Zhiwei
    Zhang, Xinfu
    Man, Huizi
    Huang, Zhenlong
    Li, Ning
    Xiao, Yi
    CHEMICAL COMMUNICATIONS, 2019, 55 (13) : 1951 - 1954