Quantum spacetimes from general relativity?

被引:0
作者
Much, Albert [1 ]
机构
[1] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
关键词
Noncommutative geometry; Deformation quantization; General relativity; Quantum gravity; DEFORMATION-THEORY; FIELD THEORY; QUANTIZATION; SCHWARZSCHILD; CONSTRUCTION; MANIFOLDS;
D O I
10.1016/j.geomphys.2024.105370
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a non-commutative product for curved spacetimes, that can be regarded as a generalization of the Rieffel (or Moyal-Weyl) product. This product employs the exponential map and a Poisson tensor, and the deformed product maintains associativity under the condition that the Poisson tensor 0 satisfies 0 mu nu del nu 0'sigma = 0, in relation to a Levi-Cevita connection. We proceed to solve the associativity condition for various physical spacetimes, uncovering non-commutative structures with compelling properties. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:23
相关论文
共 50 条
[1]   QUANTUM MEASUREMENT, GRAVITATION, AND LOCALITY [J].
AHLUWALIA, DV .
PHYSICS LETTERS B, 1994, 339 (04) :301-303
[2]   Twisting all the way: From classical mechanics to quantum fields [J].
Aschieri, Paolo ;
Lizzi, Fedele ;
Vitale, Patrizia .
PHYSICAL REVIEW D, 2008, 77 (02)
[3]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[4]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[5]   QUANTUM-MECHANICS AS A DEFORMATION OF CLASSICAL MECHANICS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
LETTERS IN MATHEMATICAL PHYSICS, 1977, 1 (06) :521-530
[6]   Poisson-Riemannian geometry [J].
Beggs, Edwin J. ;
Majid, Shahn .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 :450-491
[7]   Riemann-Poisson manifolds and Kahler-Riemann foliations [J].
Boucetta, M .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (05) :423-428
[8]   'Vacuum-like' Hadamard states for quantum fields on curved spacetimes [J].
Brum, Marcos ;
Fredenhagen, Klaus .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (02)
[9]   Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories [J].
Buchholz, Detlev ;
Lechner, Gandalf ;
Summers, Stephen J. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (01) :95-123
[10]   On black holes and cosmological constant in noncommutative gauge theory of gravity [J].
Chaichian, M. ;
Tureanu, A. ;
Setare, M. R. ;
Zet, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04)