Global existence in a three-dimensional chemotaxis-Stokes system with ρ-Laplacian diffusion and singular sensitivity

被引:0
作者
He, Ruina [1 ]
Li, Zhongping [1 ]
机构
[1] China West Normal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
关键词
Global existence; Chemotaxis; Singular sensitivity; p-Laplacian diffusion; Logistic source; KELLER-SEGEL SYSTEM; ASYMPTOTIC-BEHAVIOR; WEAK SOLUTIONS; BOUNDEDNESS; MODEL; STABILIZATION; CONSUMPTION;
D O I
10.1016/j.nonrwa.2025.104339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the following chemotaxis-Stokes system {n(t)+u & sdot;del(n)=del & sdot;(|del n|(p-2)del(n))-chi del & sdot;((n)/(c)del c)+n(r-mu n(delta)), c(t)+u & sdot;del c=Delta c-nc, u(t)=Delta u+del P+n del Phi in a smooth bounded domain Omega subset of R-3 with no-flux/no-flux/Dirichlet boundary conditions. It is shown that there exists a global weak solution when p >= 2 and delta>(3)/(2), which removes the restriction p> min {(6 delta+1)/(2(2 delta-1)), (2 delta(delta+2))/((2 delta+3)(delta-1)) and improves the result of the paper (Han and Liu, 2023).
引用
收藏
页数:13
相关论文
共 39 条
[1]  
[Anonymous], 1969, Quelques mthodes de rsolution des problmes aux limites non linaires
[2]   Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant [J].
Baghaei, Khadijeh ;
Khelghati, Ali .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (06) :633-639
[3]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[4]   Volume effects in the Keller-Segel model: energy estimates preventing blow-up [J].
Calvez, Vincent ;
Carrillo, Jose A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :155-175
[5]   A Note on Global Existence for the Chemotaxis-Stokes Model with Nonlinear Diffusion [J].
Duan, Renjun ;
Xiang, Zhaoyin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (07) :1833-1852
[6]  
Friedman A., 1969, Partial differential equations
[7]   STABILIZATION IN A CHEMOTAXIS MODEL FOR TUMOR INVASION [J].
Fujie, Kentarou ;
Ito, Akio ;
Winkler, Michael ;
Yokota, Tomomi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (01) :151-169
[8]   Global weak solution for a chemotaxis Navier-Stokes system with p-Laplacian diffusion and singular sensitivity [J].
Han, Jiayi ;
Liu, Changchun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
[9]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[10]  
Horstmann D., 2003, JAHRESBER DTSCH MATH, V105, P103