Detection of single-mode thermal microwave photons using an underdamped Josephson junction

被引:0
作者
Pankratov, A. L. [1 ,2 ]
Gordeeva, A. V. [1 ]
Chiginev, A. V. [1 ,2 ]
Revin, L. S. [1 ,2 ]
Blagodatkin, A. V. [1 ,2 ]
Crescini, N. [3 ,4 ]
Kuzmin, L. S. [1 ,5 ]
机构
[1] Nizhny Novgorod State Tech Univ n R E Alekseev, Nizhnii Novgorod 603950, Russia
[2] RAS, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia
[3] Fdn Bruno Kessler FBK, I-38123 Trento, Italy
[4] Univ Grenoble Alpes, Inst Neel, CNRS, Grenoble INP, F-38000 Grenoble, France
[5] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
基金
俄罗斯科学基金会;
关键词
QUANTUM-NONDEMOLITION DETECTION; CIRCUIT; FIELDS; NOISE;
D O I
10.1038/s41467-025-56040-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When measuring electromagnetic radiation of frequency f, the most sensitive detector counts single quanta of energy hf. Single photon detectors have been demonstrated from gamma-rays to infrared wavelengths, with ongoing efforts to extend their range to microwaves. Here we show that an underdamped Josephson junction can detect 14 GHz thermal photons, with energy 10 yJ or 50 mu eV, stochastically emitted by a microwave copper cavity at millikelvin temperatures. After characterizing the source and the detector, we vary the cavity temperature and measure the photon rate. The device achieves 45% efficiency and a dark count rate of 0.1 Hz over several GHz. Demonstrated super-Poissonian photon statistics is a signature of thermal light and a hallmark of quantum chaos. We discuss applications in dark matter axion searches and note its relevance to quantum information and fundamental physics.
引用
收藏
页数:9
相关论文
共 66 条
[1]   Search for Dark Matter Axions with CAST-CAPP [J].
Adair, C. M. ;
Altenmueller, K. ;
Anastassopoulos, V ;
Cuendis, S. Arguedas ;
Baier, J. ;
Barth, K. ;
Belov, A. ;
Bozicevic, D. ;
Brauninger, H. ;
Cantatore, G. ;
Caspers, F. ;
Castel, J. F. ;
Cetin, S. A. ;
Chung, W. ;
Choi, H. ;
Choi, J. ;
Dafni, T. ;
Davenport, M. ;
Dermenev, A. ;
Desch, K. ;
Doebrich, B. ;
Fischer, H. ;
Funk, W. ;
Galan, J. ;
Gardikiotis, A. ;
Gninenko, S. ;
Golm, J. ;
Hasinoff, M. D. ;
Hoffmann, D. H. H. ;
Diez Ibanez, D. ;
Irastorza, I. G. ;
Jakovcic, K. ;
Kaminski, J. ;
Karuza, M. ;
Krieger, C. ;
Kutlu, C. ;
Lakic, B. ;
Laurent, J. M. ;
Lee, J. ;
Lee, S. ;
Luzon, G. ;
Malbrunot, C. ;
Margalejo, C. ;
Maroudas, M. ;
Miceli, L. ;
Mirallas, H. ;
Obis, L. ;
Ozbey, A. ;
Ozbozduman, K. ;
Pivovaroff, M. J. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   Detecting spins by their fluorescence with a microwave photon counter [J].
Albertinale, Emanuele ;
Balembois, Leo ;
Billaud, Eric ;
Ranjan, Vishal ;
Flanigan, Daniel ;
Schenkel, Thomas ;
Esteve, Daniel ;
Vion, Denis ;
Bertet, Patrice ;
Flurin, Emmanuel .
NATURE, 2021, 600 (7889) :434-+
[3]   First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source [J].
Amenomori, M. ;
Bao, Y. W. ;
Bi, X. J. ;
Chen, D. ;
Chen, T. L. ;
Chen, W. Y. ;
Chen, Xu ;
Chen, Y. ;
Cirennima ;
Cui, S. W. ;
Danzengluobu ;
Ding, L. K. ;
Fang, J. H. ;
Fang, K. ;
Feng, C. F. ;
Feng, Zhaoyang ;
Feng, Z. Y. ;
Gao, Qi ;
Gou, Q. B. ;
Guo, Y. Q. ;
He, H. H. ;
He, Z. T. ;
Hibino, K. ;
Hotta, N. ;
Hu, Haibing ;
Hu, H. B. ;
Huang, J. ;
Jia, H. Y. ;
Jiang, L. ;
Jin, H. B. ;
Kajino, F. ;
Kasahara, K. ;
Katayose, Y. ;
Kato, C. ;
Kato, S. ;
Kawata, K. ;
Kozai, M. ;
Labaciren ;
Le, G. M. ;
Li, A. F. ;
Li, H. J. ;
Li, W. J. ;
Lin, Y. H. ;
Liu, B. ;
Liu, C. ;
Liu, J. S. ;
Liu, M. Y. ;
Lou, Y-Q ;
Lu, H. ;
Meng, X. R. .
PHYSICAL REVIEW LETTERS, 2019, 123 (05)
[4]   Single-photon detector in the microwave range [J].
Astafiev, O ;
Komiyama, S ;
Kutsuwa, T ;
Antonov, V ;
Kawaguchi, Y ;
Hirakawa, K .
APPLIED PHYSICS LETTERS, 2002, 80 (22) :4250-4252
[5]   Cyclically Operated Microwave Single-Photon Counter with Sensitivity of 10-22 W/√Hz [J].
Balembois, L. ;
Travesedo, J. ;
Pallegoix, L. ;
May, A. ;
Billaud, E. ;
Villiers, M. ;
Esteve, D. ;
Vion, D. ;
Bertet, P. ;
Flurin, E. .
PHYSICAL REVIEW APPLIED, 2024, 21 (01)
[6]   Searching for galactic axions through magnetized media: The QUAX proposal [J].
Barbieri, R. ;
Braggio, C. ;
Carugno, G. ;
Gallo, C. S. ;
Lombardi, A. ;
Ortolan, A. ;
Pengo, R. ;
Ruoso, G. ;
Speake, C. C. .
PHYSICS OF THE DARK UNIVERSE, 2017, 15 :135-141
[7]  
Barone A., 1982, PHYS APPL JOSEPHSON, DOI [10.1002/352760278X, DOI 10.1002/352760278X]
[8]   Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons [J].
Besse, Jean-Claude ;
Gasparinetti, Simone ;
Collodo, Michele C. ;
Walter, Theo ;
Kurpiers, Philipp ;
Pechal, Marek ;
Eichler, Christopher ;
Wallraff, Andreas .
PHYSICAL REVIEW X, 2018, 8 (02)
[9]  
Bettini A, 2008, INTRODUCTION TO ELEMENTARY PARTICLE PHYSICS, P1, DOI 10.1017/CBO9780511809019
[10]   Circuit quantum electrodynamics [J].
Blais, Alexandre ;
Grimsmo, Arne L. ;
Girvin, S. M. ;
Wallraffe, Andreas .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)