Integrating High-Frequency Data In Volatility Prediction: A DCC-GARCH-MIDAS Approach

被引:0
作者
Jin, Shuang [1 ]
Choo, Wei Chong [1 ]
Tunde, Matemilola Bolaji [1 ]
Kin, Wan Cheong [2 ]
Jin, Pengrui [3 ]
机构
[1] Univ Putra Malaysia, Sch Business & Econ, Serdang, Malaysia
[2] Tunku Abdul Rahman Univ Management & Technol TARU, Fac Accountancy Finance & Business, Dept Econ & Corp Adm, Kuala Lumpur, Malaysia
[3] Univ Birmingham, Birmingham, W Midlands, England
来源
JOURNAL OF APPLIED SCIENCE AND ENGINEERING | 2025年 / 28卷 / 05期
关键词
DCC; MIDAS; GARCH; Long-run correlation; Macroeconomic variables; STOCK-MARKET; MODELS; COMMODITIES;
D O I
10.6180/jase.202505_28(5).0013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional econometric models are restricted in their capacity to examine same-frequency data, resulting in the loss of valuable information from high-frequency data. To address this problem, We propose the DCC-GARCH-MIDAS model by combining dynamic conditional correlation modeling with information from high-frequency data. For our empirical study, we utilised historical data from 2000 to 2019 as in-sample data and trained a model for predicting volatility. We applied the trained model to forecast data from 2020 to 2022, calculating the discrepancy between predicted volatility and actual observations, and comparing differences between the predicted and actual values. The research findings not only enhance comprehension of the correlation between macroeconomics and financial market instability but also propose a distinct strategy for resolving the problem of incongruent data frequencies.
引用
收藏
页码:1055 / 1071
页数:17
相关论文
共 50 条
  • [21] State Heterogeneity Analysis of Financial Volatility using high-frequency Financial Data
    Chun, Dohyun
    Kim, Donggyu
    JOURNAL OF TIME SERIES ANALYSIS, 2021, : 105 - 124
  • [22] EQUITY RISK: MEASURING RETURN VOLATILITY USING HISTORICAL HIGH-FREQUENCY DATA
    Chow, Alan
    Lahtinen, Kyre
    STUDIES IN BUSINESS AND ECONOMICS, 2019, 14 (03) : 60 - 71
  • [23] Forecasting exchange rate volatility using high-frequency data: Is the euro different?
    Chortareas, Georgios
    Jiang, Ying
    Nankervis, John. C.
    INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (04) : 1089 - 1107
  • [24] Stock market volatility forecasting: Do we need high-frequency data?
    Lyocsa, Stefan
    Molnar, Peter
    Vyrost, Tomas
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (03) : 1092 - 1110
  • [25] Cross-sectional return dispersion and stock market volatility: Evidence from high-frequency data
    Niu, Zibo
    Demirer, Riza
    Suleman, Muhammad Tahir
    Zhang, Hongwei
    JOURNAL OF FORECASTING, 2023, 42 (06) : 1309 - 1328
  • [26] Inference from high-frequency data: A subsampling approach
    Christensen, K.
    Podolskij, M.
    Thamrongrat, N.
    Veliyev, B.
    JOURNAL OF ECONOMETRICS, 2017, 197 (02) : 245 - 272
  • [27] The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH-MIDAS approach
    Fang, Libing
    Chen, Baizhu
    Yu, Honghai
    Qian, Yichuo
    JOURNAL OF FUTURES MARKETS, 2018, 38 (03) : 413 - 422
  • [28] Hedge Ratio Prediction with Noisy and Asynchronous High-Frequency Data
    Lai, Yu-Sheng
    JOURNAL OF FUTURES MARKETS, 2016, 36 (03) : 295 - 314
  • [29] Structured volatility matrix estimation for non-synchronized high-frequency financial data
    Fan, Jianqing
    Kim, Donggyu
    JOURNAL OF ECONOMETRICS, 2019, 209 (01) : 61 - 78
  • [30] The role of high-frequency data in volatility forecasting: evidence from the China stock market
    Liu, Min
    Lee, Chien-Chiang
    Choo, Wei-Chong
    APPLIED ECONOMICS, 2021, 53 (22) : 2500 - 2526