A comparative study of JKR and DMT contact models for the DEM simulation of powder spreading in additive manufacturing

被引:0
作者
Jaggannagari, Sujith Reddy [1 ]
Gan, Yixiang [2 ]
Annabattula, Ratna Kumar [1 ,3 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Mech Mat Lab, Chennai 600036, India
[2] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
[3] Indian Inst Technol Madras, Ctr Excellence Mat & Mfg Futurist Mobil, Addit Mfg Grp, Chennai 600036, India
关键词
Cohesion contact models; Discrete element method (DEM); Derjaguin-Muller-Toporov model (DMT); Johnson-Kendall-Roberts model (JKR); Powder bed fusion additive manufacturing (PBFAM); DISCRETE ELEMENT SIMULATION; ADHESION; FLOW; TRANSITION; BEHAVIOR; METAL;
D O I
10.1007/s40571-024-00894-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Powder spreading is the fundamental and most important process of powder bed fusion additive manufacturing. Powder particles experience cohesive forces due to their micron size, and these forces influence the quality of the layer. The dynamics of powder spreading is simulated using the discrete element method (DEM). DEM contact models with non-cohesive and cohesive interactions were used in past studies. This work compares two predominant cohesion contact models, the Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT). The influence of cohesion parameters and particle size on the spread layer quality is analysed. Additionally, mesoscopic analysis is carried out to gain insights into the behaviour of the spreading mechanism. The Tabor parameter (lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}) that establishes the suitability of a specific cohesion model is investigated in the context of powder spreading process. Both models predict similar packing fractions at lower lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}, whereas, at higher values of the lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}, the contact forces of the JKR and DMT models diverge, leading to differences in packing fractions and local particle configurations in the spread layer. The findings demonstrate that the JKR model is applicable across the entire range of Tabor parameter.
引用
收藏
页码:1683 / 1699
页数:17
相关论文
共 50 条
  • [41] Experimental Characterization and Computational Simulation of Powder Bed for Powder Bed Fusion Additive Manufacturing
    Kikuchi, Keiko
    Tanifuji, Yuta
    Zhou, Weiwei
    Nomura, Naoyuki
    Kawasaki, Akira
    MATERIALS TRANSACTIONS, 2022, 63 (06) : 931 - 938
  • [42] Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations
    Haeri, S.
    POWDER TECHNOLOGY, 2017, 321 : 94 - 104
  • [43] Characterization of powder bed generation in electron beam additive manufacturing by discrete element method (DEM)
    Zhao, Yufan
    Koizumi, Yuichiro
    Aoyagi, Kenta
    Yamanaka, Kenta
    Chiba, Akihiko
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (11) : 11437 - 11440
  • [44] A numerical study on the packing quality of fibre/polymer composite powder for powder bed fusion additive manufacturing
    Tan, Pengfei
    Shen, Fei
    Tey, Wei Shian
    Zhou, Kun
    VIRTUAL AND PHYSICAL PROTOTYPING, 2021, 16 (S1) : S1 - S18
  • [45] Powder-bed-fusion additive manufacturing of molybdenum: Process simulation, optimization, and property prediction
    Wu, Yuhang
    Li, Meng
    Wang, Ju
    Wang, Yang
    An, Xizhong
    Fu, Haitao
    Zhang, Hao
    Yang, Xiaohong
    Zou, Qingchuan
    ADDITIVE MANUFACTURING, 2022, 58
  • [46] Is high-speed powder spreading really unfavourable for the part quality of laser powder bed fusion additive manufacturing?
    Chen, Hui
    Cheng, Tan
    Li, Zhongwei
    Wei, Qingsong
    Yan, Wentao
    ACTA MATERIALIA, 2022, 231
  • [47] Numerical simulation of powder effect on solidification in directed energy deposition additive manufacturing
    Yao, Xin-xin
    Li, Jian-yu
    Wang, Yi-fei
    Gao, Xiang
    Zhang, Zhao
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2021, 31 (09) : 2871 - 2884
  • [48] Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method
    Habiba, Ummay
    Hebert, Rainer. J. J.
    MATERIALS, 2023, 16 (07)
  • [49] Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density
    Rausch, Alexander M.
    Kueng, Vera E.
    Pobel, Christoph
    Markl, Matthias
    Koerner, Carolin
    MATERIALS, 2017, 10 (10)
  • [50] Numerical and experimental analysis of powder bed homogeneity through multi-layer spreading in additive manufacturing
    Jaggannagari, Sujith Reddy
    Kan, Wen Hao
    Chiu, Louis N. S.
    Proust, Gwenaelle
    Huang, Aijun
    Gan, Yixiang
    Annabattula, Ratna Kumar
    ADDITIVE MANUFACTURING, 2025, 97