A comparative study of JKR and DMT contact models for the DEM simulation of powder spreading in additive manufacturing

被引:0
|
作者
Jaggannagari, Sujith Reddy [1 ]
Gan, Yixiang [2 ]
Annabattula, Ratna Kumar [1 ,3 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Mech Mat Lab, Chennai 600036, India
[2] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
[3] Indian Inst Technol Madras, Ctr Excellence Mat & Mfg Futurist Mobil, Addit Mfg Grp, Chennai 600036, India
关键词
Cohesion contact models; Discrete element method (DEM); Derjaguin-Muller-Toporov model (DMT); Johnson-Kendall-Roberts model (JKR); Powder bed fusion additive manufacturing (PBFAM); DISCRETE ELEMENT SIMULATION; ADHESION; FLOW; TRANSITION; BEHAVIOR; METAL;
D O I
10.1007/s40571-024-00894-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Powder spreading is the fundamental and most important process of powder bed fusion additive manufacturing. Powder particles experience cohesive forces due to their micron size, and these forces influence the quality of the layer. The dynamics of powder spreading is simulated using the discrete element method (DEM). DEM contact models with non-cohesive and cohesive interactions were used in past studies. This work compares two predominant cohesion contact models, the Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT). The influence of cohesion parameters and particle size on the spread layer quality is analysed. Additionally, mesoscopic analysis is carried out to gain insights into the behaviour of the spreading mechanism. The Tabor parameter (lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}) that establishes the suitability of a specific cohesion model is investigated in the context of powder spreading process. Both models predict similar packing fractions at lower lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}, whereas, at higher values of the lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}, the contact forces of the JKR and DMT models diverge, leading to differences in packing fractions and local particle configurations in the spread layer. The findings demonstrate that the JKR model is applicable across the entire range of Tabor parameter.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Powder spreading, densification, and part deformation in binder jetting additive manufacturing
    Yousub Lee
    Peeyush Nandwana
    Srdjan Simunovic
    Progress in Additive Manufacturing, 2022, 7 : 111 - 125
  • [32] Parametric Analysis and Designing Maps for Powder Spreading in Metal Additive Manufacturing
    Wu, Yuxuan
    Namilae, Sirish
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025, 142 (02): : 2067 - 2090
  • [33] Powder spreading, densification, and part deformation in binder jetting additive manufacturing
    Lee, Yousub
    Nandwana, Peeyush
    Simunovic, Srdjan
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (01) : 111 - 125
  • [34] Study of Adhesion and Friction Properties on a Nanoparticle Gradient Surface: Transition from JKR to DMT Contact Mechanics
    Ramakrishna, Shivaprakash N.
    Nalam, Prathima C.
    Clasohm, Lucy Y.
    Spencer, Nicholas D.
    LANGMUIR, 2013, 29 (01) : 175 - 182
  • [35] Dynamic simulation of powder packing structure for powder bed additive manufacturing
    Y. S. Lee
    P. Nandwana
    W. Zhang
    The International Journal of Advanced Manufacturing Technology, 2018, 96 : 1507 - 1520
  • [36] Dynamic simulation of powder packing structure for powder bed additive manufacturing
    Lee, Y. S.
    Nandwana, P.
    Zhang, W.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 96 (1-4): : 1507 - 1520
  • [37] Discrete Element Simulation of the Effect of Roller-Spreading Parameters on Powder-Bed Density in Additive Manufacturing
    Zhang, Jiangtao
    Tan, Yuanqiang
    Bao, Tao
    Xu, Yangli
    Xiao, Xiangwu
    Jiang, Shengqiang
    MATERIALS, 2020, 13 (10)
  • [38] Study on the Powder-Spreading Process of Walnut Shell/Co-PES Biomass Composite Powder in Additive Manufacturing
    Yu, Yueqiang
    Ma, Tingang
    Wang, Suling
    Jiang, Minzheng
    Gao, Sheng
    Guo, Yanling
    Jiang, Ting
    Doumbia, Bakary S.
    Yan, Bo
    Shen, Shaorui
    MATERIALS, 2023, 16 (12)
  • [39] Simulation of Forming Process of Powder Bed for Additive Manufacturing
    Xiang, Zhaowei
    Yin, Ming
    Deng, Zhenbo
    Mei, Xiaoqin
    Yin, Guofu
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (08):
  • [40] Rapid Thermal Simulation of Powder Bed Additive Manufacturing
    Vignat, Frederic
    Beraud, Nicolas
    Villeneuve, Francois
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2018, : 1498 - 1502