A comparative study of JKR and DMT contact models for the DEM simulation of powder spreading in additive manufacturing

被引:0
|
作者
Jaggannagari, Sujith Reddy [1 ]
Gan, Yixiang [2 ]
Annabattula, Ratna Kumar [1 ,3 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Mech Mat Lab, Chennai 600036, India
[2] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
[3] Indian Inst Technol Madras, Ctr Excellence Mat & Mfg Futurist Mobil, Addit Mfg Grp, Chennai 600036, India
关键词
Cohesion contact models; Discrete element method (DEM); Derjaguin-Muller-Toporov model (DMT); Johnson-Kendall-Roberts model (JKR); Powder bed fusion additive manufacturing (PBFAM); DISCRETE ELEMENT SIMULATION; ADHESION; FLOW; TRANSITION; BEHAVIOR; METAL;
D O I
10.1007/s40571-024-00894-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Powder spreading is the fundamental and most important process of powder bed fusion additive manufacturing. Powder particles experience cohesive forces due to their micron size, and these forces influence the quality of the layer. The dynamics of powder spreading is simulated using the discrete element method (DEM). DEM contact models with non-cohesive and cohesive interactions were used in past studies. This work compares two predominant cohesion contact models, the Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT). The influence of cohesion parameters and particle size on the spread layer quality is analysed. Additionally, mesoscopic analysis is carried out to gain insights into the behaviour of the spreading mechanism. The Tabor parameter (lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}) that establishes the suitability of a specific cohesion model is investigated in the context of powder spreading process. Both models predict similar packing fractions at lower lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}, whereas, at higher values of the lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}, the contact forces of the JKR and DMT models diverge, leading to differences in packing fractions and local particle configurations in the spread layer. The findings demonstrate that the JKR model is applicable across the entire range of Tabor parameter.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A modular testbed for mechanized spreading of powder layers for additive manufacturing
    Oropeza, D.
    Roberts, R.
    Hart, A. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (01):
  • [22] Wear of blade spreader during powder spreading in Additive Manufacturing
    Ge, Lanzhou
    Xu, Rui
    Nan, Wenguang
    TRIBOLOGY INTERNATIONAL, 2023, 188
  • [23] Experimental approach for development of a powder spreading metric in additive manufacturing
    Sehhat, M. Hossein
    Sutton, Austin T.
    Yates, Zane
    Leu, Ming C.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 126 (1-2): : 371 - 380
  • [24] Effect of blade geometry on the powder spreading process in additive manufacturing
    Yang, Deze
    Chu, Xihua
    Liu, Qipeng
    PARTICUOLOGY, 2024, 94 : 345 - 355
  • [25] The influence of material and process parameters on powder spreading in additive manufacturing
    Shaheen, Mohamad Yousef
    Thornton, Anthony R.
    Luding, Stefan
    Weinhart, Thomas
    POWDER TECHNOLOGY, 2021, 383 : 564 - 583
  • [26] Experimental approach for development of a powder spreading metric in additive manufacturing
    M. Hossein Sehhat
    Austin T. Sutton
    Zane Yates
    Ming C. Leu
    The International Journal of Advanced Manufacturing Technology, 2023, 126 : 371 - 380
  • [27] Role of gravity magnitude on flowability and powder spreading in the powder bed fusion additive manufacturing process: Towards additive manufacturing in space
    Yim, Seungkyun
    Wang, Hao
    Aoyagi, Kenta
    Yamanaka, Kenta
    Chiba, Akihiko
    ADDITIVE MANUFACTURING, 2024, 94
  • [28] Simulation and analysis of powder bed for additive manufacturing
    Xiang Z.
    Yin M.
    Deng Z.
    Mei X.
    Yin G.
    Yin, Ming (mingyin@scu.edu.cn), 1600, Sichuan University (48): : 191 - 197
  • [29] Powder spreading and spreadability in powder-based additive manufacturing: State of the art and perspectives
    Nan, Wenguang
    Ge, Lanzhou
    He, Ziming
    Sun, Zhonggang
    Lu, Jinzhong
    POWDER TECHNOLOGY, 2025, 449
  • [30] Powder spreading and spreadability in the additive manufacturing of metallic materials: A critical review
    Capozzi, Luigi C.
    Sivo, Antonio
    Bassini, Emilio
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 308