A comparative study of JKR and DMT contact models for the DEM simulation of powder spreading in additive manufacturing

被引:0
|
作者
Jaggannagari, Sujith Reddy [1 ]
Gan, Yixiang [2 ]
Annabattula, Ratna Kumar [1 ,3 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Mech Mat Lab, Chennai 600036, India
[2] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
[3] Indian Inst Technol Madras, Ctr Excellence Mat & Mfg Futurist Mobil, Addit Mfg Grp, Chennai 600036, India
关键词
Cohesion contact models; Discrete element method (DEM); Derjaguin-Muller-Toporov model (DMT); Johnson-Kendall-Roberts model (JKR); Powder bed fusion additive manufacturing (PBFAM); DISCRETE ELEMENT SIMULATION; ADHESION; FLOW; TRANSITION; BEHAVIOR; METAL;
D O I
10.1007/s40571-024-00894-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Powder spreading is the fundamental and most important process of powder bed fusion additive manufacturing. Powder particles experience cohesive forces due to their micron size, and these forces influence the quality of the layer. The dynamics of powder spreading is simulated using the discrete element method (DEM). DEM contact models with non-cohesive and cohesive interactions were used in past studies. This work compares two predominant cohesion contact models, the Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT). The influence of cohesion parameters and particle size on the spread layer quality is analysed. Additionally, mesoscopic analysis is carried out to gain insights into the behaviour of the spreading mechanism. The Tabor parameter (lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}) that establishes the suitability of a specific cohesion model is investigated in the context of powder spreading process. Both models predict similar packing fractions at lower lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}, whereas, at higher values of the lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{T}}$$\end{document}, the contact forces of the JKR and DMT models diverge, leading to differences in packing fractions and local particle configurations in the spread layer. The findings demonstrate that the JKR model is applicable across the entire range of Tabor parameter.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A DEM study of powder spreading in additive layer manufacturing
    Yahia M. Fouda
    Andrew E. Bayly
    Granular Matter, 2020, 22
  • [2] A DEM study of powder spreading in additive layer manufacturing
    Fouda, Yahia M.
    Bayly, Andrew E.
    GRANULAR MATTER, 2020, 22 (01)
  • [3] Comparative evaluation of powder spreading strategies to enhance powder bed quality in powder bed fusion additive manufacturing: A DEM simulation study
    Yim, Seungkyun
    Wang, Hao
    Aoyagi, Kenta
    Yamanaka, Kenta
    Chiba, Akihiko
    POWDER TECHNOLOGY, 2025, 453
  • [4] DEM POWDER SPREADING AND SPH POWDER MELTING MODELS FOR ADDITIVE MANUFACTURING PROCESS SIMULATIONS
    Bierwisch, Claas
    VI INTERNATIONAL CONFERENCE ON PARTICLE-BASED METHODS (PARTICLES 2019): FUNDAMENTALS AND APPLICATIONS, 2019, : 434 - 443
  • [5] A 3D DEM simulation to study the influence of material and process parameters on spreading of metallic powder in additive manufacturing
    Marchais, K.
    Girardot, J.
    Metton, C.
    Iordanoff, I.
    COMPUTATIONAL PARTICLE MECHANICS, 2021, 8 (04) : 943 - 953
  • [6] A 3D DEM simulation to study the influence of material and process parameters on spreading of metallic powder in additive manufacturing
    K. Marchais
    J. Girardot
    C. Metton
    I. Iordanoff
    Computational Particle Mechanics, 2021, 8 : 943 - 953
  • [7] Discrete element simulation and experimental study of powder spreading process in additive manufacturing
    Haeri, S.
    Wang, Y.
    Ghita, O.
    Sun, J.
    POWDER TECHNOLOGY, 2017, 306 : 45 - 54
  • [8] Numerical simulation of powder flow during spreading in additive manufacturing
    Nan, Wenguang
    Ghadiri, Mojtaba
    POWDER TECHNOLOGY, 2019, 342 : 801 - 807
  • [9] Simulation of powder spreading of functionally graded materials in powder bed fusion additive manufacturing
    Wang, Lin
    Li, Erlei
    Zhou, Zongyan
    Zhang, Baicheng
    Yu, Aibing
    ACTA MECHANICA SINICA, 2023, 39 (01)
  • [10] A literature review on powder spreading in additive manufacturing
    Miao, Guanxiong
    Du, Wenchao
    Pei, Zhijian
    Ma, Chao
    ADDITIVE MANUFACTURING, 2022, 58