Generalized Sumudu transform and tempered ξ-Caputo fractional derivative

被引:0
|
作者
Elkhalloufy, Khadija [1 ]
Hilal, Khalid [1 ]
Kajouni, Ahmed [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, Beni Mellal 23000, Morocco
关键词
Sumudu transform; tempered xi-fractional derivative; initial value problem; DIFFERENTIAL-EQUATIONS;
D O I
10.2298/FIL2426213E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applied the generalized Sumudu transform to the tempered xi-Hilfer fractional integral and the tempered xi-Caputo fractional derivative. Our findings are utilized to address non homogeneous linear fractional differential equations in an initial value problem involving the tempered xi-Caputo fractional derivative of an order zeta for n - 1 < zeta < n is an element of N. An example is provided for 0 < zeta < 1.
引用
收藏
页码:9213 / 9221
页数:9
相关论文
共 50 条
  • [31] A survey on random fractional differential equations involving the generalized Caputo fractional-order derivative
    Vu, Ho
    Phu, Nguyen Dinh
    Hoa, Ngo Van
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [32] Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform
    Agarwal, P.
    Ntouyas, S. K.
    Jain, S.
    Chand, M.
    Singh, G.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1937 - 1942
  • [33] Dynamical Analysis of Generalized Tumor Model with Caputo Fractional-Order Derivative
    Padder, Ausif
    Almutairi, Laila
    Qureshi, Sania
    Soomro, Amanullah
    Afroz, Afroz
    Hincal, Evren
    Tassaddiq, Asifa
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [34] Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (09) : 3110 - 3116
  • [35] Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations
    Xuhao Li
    Patricia J. Y. Wong
    Journal of Applied Mathematics and Computing, 2023, 69 : 4689 - 4716
  • [36] Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations
    Li, Xuhao
    Wong, Patricia J. Y.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4689 - 4716
  • [37] Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator
    Pathak, R. S.
    Prasad, Akhilesh
    Kumar, Manish
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (02) : 239 - 254
  • [38] Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator
    R. S. Pathak
    Akhilesh Prasad
    Manish Kumar
    Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 239 - 254
  • [39] Automatic initialization of the Caputo fractional derivative
    Trigeassou, J-C.
    Maamri, N.
    Oustaloup, A.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 3362 - 3368
  • [40] On a Caputo-type fractional derivative
    Oliveira, Daniela S.
    de Oliveira, Edmundo Capelas
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (02) : 81 - 91