Generalized Sumudu transform and tempered ξ-Caputo fractional derivative

被引:0
|
作者
Elkhalloufy, Khadija [1 ]
Hilal, Khalid [1 ]
Kajouni, Ahmed [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, Beni Mellal 23000, Morocco
关键词
Sumudu transform; tempered xi-fractional derivative; initial value problem; DIFFERENTIAL-EQUATIONS;
D O I
10.2298/FIL2426213E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applied the generalized Sumudu transform to the tempered xi-Hilfer fractional integral and the tempered xi-Caputo fractional derivative. Our findings are utilized to address non homogeneous linear fractional differential equations in an initial value problem involving the tempered xi-Caputo fractional derivative of an order zeta for n - 1 < zeta < n is an element of N. An example is provided for 0 < zeta < 1.
引用
收藏
页码:9213 / 9221
页数:9
相关论文
共 50 条
  • [1] Generalized Laplace Transform and Tempered ?-Caputo Fractional Derivative
    Medved, Milan
    Pospisil, Michal
    MATHEMATICAL MODELLING AND ANALYSIS, 2023, 28 (01) : 146 - 162
  • [2] Nonlinear Integral Inequalities Involving Tempered ?-Hilfer Fractional Integral and Fractional Equations with Tempered ?-Caputo Fractional Derivative
    Medved', Milan
    Pospisil, Michal
    Brestovanska, Eva
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [3] An Efficient Perturbation Sumudu Transform Technique for the Time-Fractional Vibration Equation with a Memory Dependent Fractional Derivative in Liouville–Caputo Sense
    Goyal M.
    Prakash A.
    Gupta S.
    International Journal of Applied and Computational Mathematics, 2021, 7 (4)
  • [4] Fractional viscoelastic models with Caputo generalized fractional derivative
    Bhangale, Nikita
    Kachhia, Krunal B.
    Gomez-Aguilar, J. F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 7835 - 7846
  • [5] A new iterative method with ρ-Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative
    Bhangale, Nikita
    Kachhia, Krunal B.
    Gomez-Aguilar, J. F.
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2125 - 2138
  • [6] Application of Sumudu Transform in Generalized Fractional Reaction–Diffusion Equation
    Alkahtani B.
    Gulati V.
    Kılıçman A.
    International Journal of Applied and Computational Mathematics, 2016, 2 (3) : 387 - 394
  • [7] FRACTIONAL VECTOR CALCULUS IN THE FRAME OF A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE
    Gambo, Yusuf Ya'u
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 219 - 228
  • [8] The Hadamard ψ-Caputo tempered fractional derivative in various types of fuzzy fractional differential equations
    Amir, Fouad Ibrahim Abdou
    Moussaoui, Abdelhamid
    Shafqat, Ramsha
    El Omari, M’hamed
    Melliani, Said
    Soft Computing, 2024, 28 (17-18) : 9253 - 9270
  • [9] The differential transform of the Caputo-Fabrizio fractional derivative
    Alahmad, Rami
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (02): : 137 - 145
  • [10] Caputo-Based Fractional Derivative in Fractional Fourier Transform Domain
    Singh, Kulbir
    Saxena, Rajiv
    Kumar, Sanjay
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2013, 3 (03) : 330 - 337