Joint Multi-Target Tracking and Identification for Distributed Radars using Bayesian Binary Test

被引:0
|
作者
Yuan, Ye [1 ]
Ma, Shuoyang [1 ]
Yi, Wei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
来源
2024 IEEE RADAR CONFERENCE, RADARCONF 2024 | 2024年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Multi-target tracking; target recognition; distributed radar networks; TARGET TRACKING;
D O I
10.1109/RADARCONF2458775.2024.10549196
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper introduces a joint multi-target tracking and identification (J-MTT-I) approach in distributed radar systems. In the tracking phase, we utilized the extended Kalman filter, cascading to covariance intersection fusion, for distributed estimation of target states. Addressing the target identification/recognition issue involves considering and formulating true-false target classification as a binary test problem. Subsequently, the naive Bayesian classifier was employed to model the posterior probability density function concerning target types and to extract target type information from tracking results. The proposed approach offers a practical method for training target classifiers and is anticipated to be applicable to real-world radar systems. Numerical simulations confirm that utilizing multi-dimensional state estimation information derived from the target tracker can further enhance the accuracy of target identification.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] MULTI-TARGET TRACKING AND IDENTIFICATION BY A VECTOR OF SENSORS
    Geyik, Sahin Cem
    Szymanski, Boleslaw K.
    2008 IEEE MILITARY COMMUNICATIONS CONFERENCE: MILCOM 2008, VOLS 1-7, 2008, : 1460 - +
  • [22] Distributed multi-sensor multi-target tracking with feedback
    Khawsuk, W
    Pao, LY
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 5356 - 5362
  • [23] Distributed Multi-Sensor Control for Multi-Target Tracking
    Blair, Aidan
    Gostar, Amirali Khodadadian
    Tennakoon, Ruwan
    Bab-Hadiashar, Alireza
    Li, Xiaodong
    Palmer, Jennifer
    Hoseinnezhad, Reza
    2022 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2022, : 231 - 239
  • [24] Multi-target Tracking Using a PHD-based Joint Tracking and Classification Algorithm
    Magnant, Clement
    Giremus, Audrey
    Grivel, Eric
    Ratton, Laurent
    Joseph, Bernard
    2016 IEEE RADAR CONFERENCE (RADARCONF), 2016, : 132 - 137
  • [25] Multi-sensor multi-target joint tracking and classification
    Zhao, Tianqu
    Jiang, Hong
    Zhan, Kun
    Yu, Yaozhong
    2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2016, : 1103 - 1108
  • [26] Distributed Multi-Target Tracking for Autonomous Vehicle Fleets
    Shorinwa, Ola
    Yu, Javier
    Halsted, Trevor
    Koufos, Alex
    Mac Schwager
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 3495 - 3501
  • [27] A Recursive Bayesian Method for Multi-Target Detection and Tracking Using Particle Swarms
    Wu, Zhaoping
    Tao, Su
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 4282 - 4286
  • [28] Multi-target Tracking in Distributed Active Sensor Networks
    Khuong Vu
    Zheng, Rong
    Hao, Qi
    MILITARY COMMUNICATIONS CONFERENCE, 2010 (MILCOM 2010), 2010, : 1044 - 1049
  • [29] Hierarchical Model for Joint Detection and Tracking of Multi-target
    Xue, Jianru
    Ma, Zheng
    Zheng, Nanning
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 160 - 171
  • [30] Efficient Multi-View Multi-Target Tracking Using a Distributed Camera Network
    He, Li
    Liu, Guoliang
    Tian, Guohui
    Zhang, Jianhua
    Ji, Ze
    IEEE SENSORS JOURNAL, 2020, 20 (04) : 2056 - 2063