Transition metals in water treatment: from fundamental mechanisms to practical applications

被引:0
作者
Zhao, Yang [1 ,2 ]
Jiang, Han [1 ,2 ]
Yang, Feng [1 ,2 ]
Wang, Rui [1 ,2 ]
Lu, Yu-Qing [1 ,2 ]
Pan, Yi-Fan [3 ]
机构
[1] Southeast Univ Nanjing, Sch Energy & Environm, Nanjing 210096, Peoples R China
[2] Southeast Univ, State Key Lab Environm Med Engn, Minist Educ, Nanjing 210096, Peoples R China
[3] Paris Saclay Univ, Lab Solid Phys, F-91405 Orsay, France
来源
RARE METALS | 2025年
基金
中国国家自然科学基金;
关键词
Transition metals; Water treatment; Charge transfer; Practical applications; Metal toxicity; HYDROGEN EVOLUTION REACTION; ELECTROCHEMICAL OXIDATION; MOLYBDENUM-DISULFIDE; PHOTOELECTROCATALYTIC DEGRADATION; PHOTOCATALYTIC DEGRADATION; BACTERIAL INACTIVATION; SILVER NANOPARTICLES; TIO2; NANOPARTICLES; CHARGE SEPARATION; PLASMON RESONANCE;
D O I
10.1007/s12598-025-03273-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transition metals have garnered significant attention for their roles in addressing energy shortages and environmental water pollution. Their multivalent states and unique electron transfer properties facilitate charge transfer in the conversion reaction, expedite energy conversion, and achieve low-energy water treatment. This review comprehensively explores the fundamental mechanisms and practical applications of transition metals in water treatment, including adsorption, photocatalysis, electrocatalysis, photoelectrocatalysis, and other technologies. The feasibility of water treatment using transition metal-based materials is demonstrated through theoretical studies on typical transition metals employed in these water treatment technologies while emphasizing the potential for optimizing material performance through strategies like structural design, defect engineering, crystal engineering, composite materials, surface modification, and atomic catalysts. In addition, the utilization of transition metal-based materials in practical wastewater treatment is comprehensively reviewed. Finally, the challenges and perspectives of transition metal-based materials in practical wastewater treatment are outlined, providing a theoretical foundation and guidance for future research and engineering advancements. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic),(sic)(sic)(sic),(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
引用
收藏
页数:21
相关论文
共 153 条
[1]   Application of dahlia-like molybdenum disulfide nanosheets for solid phase extraction of Co(II) in vegetable and water samples [J].
Aghagoli, Mohammad Javad ;
Beyki, Mostafa Hossein ;
Shemirani, Farzaneh .
FOOD CHEMISTRY, 2017, 223 :8-15
[2]   Development of Highly Active Bifunctional Electrocatalyst Using Co3O4 on Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution [J].
Ahmed, Mohammad Shamsuddin ;
Choi, Byungchul ;
Kim, Young-Bae .
SCIENTIFIC REPORTS, 2018, 8
[3]   MoS2 Nanosheets with Widened Interlayer Spacing for High-Efficiency Removal of Mercury in Aquatic Systems [J].
Ai, Kelong ;
Ruan, Changping ;
Shen, Mengxia ;
Lu, Lehui .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (30) :5542-5549
[4]   Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview [J].
Ajmal, Anila ;
Majeed, Imran ;
Malik, Riffat Naseem ;
Idriss, Hicham ;
Nadeem, Muhammad Amtiaz .
RSC ADVANCES, 2014, 4 (70) :37003-37026
[5]   A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly [J].
Amendola, Vincenzo ;
Bakr, Osman M. ;
Stellacci, Francesco .
PLASMONICS, 2010, 5 (01) :85-97
[6]   On the performance of Fe and Fe,F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater [J].
Andrade, Leonardo S. ;
Ruotolo, Luis Augusto M. ;
Rocha-Filho, Romeu C. ;
Bocchi, Nerilso ;
Biaggio, Sonia R. ;
Iniesta, Jesus ;
Garcia-Garcia, Vicente ;
Montiel, Vicente .
CHEMOSPHERE, 2007, 66 (11) :2035-2043
[7]   Radical generation by the interaction of transition metals with common oxidants [J].
Anipsitakis, GP ;
Dionysiou, DD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (13) :3705-3712
[8]   Carbon supports for low-temperature fuel cell catalysts [J].
Antolini, Ermete .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 88 (1-2) :1-24
[9]   Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges [J].
Anwer, Hassan ;
Mahmood, Asad ;
Lee, Jechan ;
Kim, Ki-Hyun ;
Park, Jae-Woo ;
Yip, Alex C. K. .
NANO RESEARCH, 2019, 12 (05) :955-972
[10]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290