SUBATOMICITY IN RANK-2 LATTICE MONOIDS

被引:0
作者
Liu, Caroline [1 ]
Rodriguez, Pedro [2 ]
Tirador, Marcos [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Clemson Univ, Sch Math & Stat Sci, Clemson, SC USA
[3] Univ La Habana, Fac Matemat & Comp, Havana, Cuba
关键词
Furstenberg monoid; atomicity; almost atomic monoid; quasiatomic monoid; lattice monoid; factorization theory; RINGS; DIVISIBILITY; DOMAINS;
D O I
10.1216/jca.2024.16.337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a cancellative and commutative monoid (written additively). The monoid M is atomic if every noninvertible element can be written as a sum of irreducible elements (often called atoms in the literature). Weaker versions of atomicity have been recently introduced and investigated, including the properties of being nearly atomic, almost atomic, quasiatomic, and Furstenberg. In this paper, we investigate the atomic structure of lattice monoids, i.e., submonoids of a finite-rank free abelian group, putting special emphasis on the four mentioned atomic properties.
引用
收藏
页码:337 / 352
页数:16
相关论文
共 23 条
  • [1] Monoid domain constructions of antimatter domains
    Anderson, D. D.
    Coykendall, J.
    Hill, L.
    Zafrullah, M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2007, 35 (10) : 3236 - 3241
  • [2] FACTORIZATION IN INTEGRAL-DOMAINS
    ANDERSON, DD
    ANDERSON, DF
    ZAFRULLAH, M
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 69 (01) : 1 - 19
  • [3] On the Graph of Divisibility of an Integral Domain
    Boynton, Jason Greene
    Coykendall, Jim
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03): : 449 - 458
  • [4] Bruns W, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/b105283
  • [5] The Euclidean Criterion for Irreducibles
    Clark, Pete L.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (03) : 198 - 216
  • [6] COHN PM, 1968, PROC CAMB PHILOS S-M, V64, P251
  • [7] On integral domains with no atoms
    Coykendall, J
    Dobbs, DE
    Mullins, B
    [J]. COMMUNICATIONS IN ALGEBRA, 1999, 27 (12) : 5813 - 5831
  • [8] On the atomicity of monoid algebras
    Coykendall, Jim
    Gotti, Felix
    [J]. JOURNAL OF ALGEBRA, 2019, 539 : 138 - 151
  • [9] Furstenberg H., 1957, Am. Math. Mon, V62, P353, DOI [10.2307/2307043, DOI 10.2307/2307043]
  • [10] Geroldinger A.., 2006, Pure and Applied Mathematics (Boca Raton), V278