Demonstration of High-Performance 0.17-mΩ⋅cm2/800-V 4H-SiC Super-Junction Schottky Diodes via Multiepitaxial Growth and Channeled Implantation Techniques
被引:0
|
作者:
Du, Fengyu
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Xidian Wuhu Res Inst, Wuhu 241000, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Du, Fengyu
[1
,2
]
Kang, Haobo
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Kang, Haobo
[1
]
Yuan, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Xidian Wuhu Res Inst, Wuhu 241000, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Yuan, Hao
[1
,2
]
Bai, Boyi
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Bai, Boyi
[1
]
Shu, Tianyu
论文数: 0引用数: 0
h-index: 0
机构:
SICC Shanghai Semicond Mat Co Ltd, Shanghai 200120, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Shu, Tianyu
[3
]
Li, Jingyu
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Li, Jingyu
[1
]
Zhou, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Xidian Wuhu Res Inst, Wuhu 241000, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Zhou, Yu
[1
,2
]
Han, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Xidian Wuhu Res Inst, Wuhu 241000, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Han, Chao
[1
,2
]
Tang, Xiaoyan
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Tang, Xiaoyan
[1
]
Song, Qingwen
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Xidian Wuhu Res Inst, Wuhu 241000, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Song, Qingwen
[1
,2
]
Zhang, Yuming
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Xidian Wuhu Res Inst, Wuhu 241000, Peoples R ChinaXidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
Zhang, Yuming
[1
,2
]
机构:
[1] Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian 710071, Peoples R China
[2] Xidian Wuhu Res Inst, Wuhu 241000, Peoples R China
[3] SICC Shanghai Semicond Mat Co Ltd, Shanghai 200120, Peoples R China
This article demonstrates the fabrication of high-performance 4H-silicon carbide (SiC) super-junction (SJ) Schottky diodes utilizing channeled implantation and double epitaxial growth. The diodes, featuring a 4.5-mu m-thick drift region and a 4-mu m-thick SJ structure, underwent characterization encompassing both material and electrical attributes. After double epitaxial growth, the epitaxial layer showcased a maximum stress of 25.9 MPa. The full-width at half-maximum (FWHM) analysis underscored the exceptional quality of the 4H-SiC crystals across the entire wafer surface (FWHM < 25 arcsec), paralleled by atomic force microscopy (AFM) outcomes revealing an epitaxial layer with excellent smoothness (R-q < 0.35 nm). Devices fabricated on these high-quality wafers exhibited consistent performance and superior yield. Electrical property distributions revealed a breakdown voltage (BV) of 800 V alongside a specific ON-resistance (R-on,R-sp) of 0.17 m Omega<middle dot>cm(2) and a record Baliga figure of merit (BFOM) value of 3.76 GW/cm(2) (800 V), subtracting the substrate resistance, exceeding the 1-D theoretical limit of 4H-SiC successfully. Moreover, it is inferred that the channeled implantation technology is an attractive process for fabricating SiC SJ devices.